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1.1 INTRODUCTION

Modeling of many important biomolecular and soft matter systems requires

consideration of length and time scales not reachable by atomistic simula-
tions. An evident solution of this problem is introducing simplified models
with lower spacial resolution, which have received a common name: coarse-
grained (CG) models. In CG models, atoms of (macro)molecules are united
into CG sites and solvent atoms are often not considered explicitly. This
reduces greatly the number of degrees of freedom of the studied system
and allows simulations of much larger systems which are not feasible to
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2 m Coarse-Grained Modeling of Biomolecules

simulate at the atomistic level. Studies of models which can be character-
ized as “coarse-grained” started at the earlier stages of molecular modeling
in the 1960s and 1970s (when the term “coarse-grained” was not used at all).
For example, a primitive model of electrolytes represented hydrated ions as
charged spheres in a dielectric media (Vorontsov-Velyaminov and Elyashe-
vich, 1966; Card and Valleau, 1970), and a simple freely jointed model of
a polymer chain (Gottlieb and Bird, 1976) was used to model polymers in
solution. Simple rod-like particles with two or three interaction sites were
used to describe lipids in lipid bilayers and other self-assembled structures
(Noguchi and Takasu, 2001; Farago, 2003; Brannigan and Brown, 2004).
Such models were designed to illustrate general physical behavior of the
studied systems. In order to relate such models to real physical systems,
one needs to find model parameters, such as effective (hydrated) ion radius
in the primitive electrolyte model, which can be done empirically by fitting
to known experimental data.

Development of more advanced CG models for studies of specific
molecular structures including lipids, proteins, DNA, polymers, etc., sets
higher requirements for the choice of interaction potentials describing
interactions in such systems. In the so-called top-down methodology, one
is trying to parametrize the model to reproduce experimentally measur-
able macroscopic properties of the system. One of the most popular mod-
ern CG models of this kind is described in terms of the MARTINI force
field (Marrink et al., 2004, 2007), which represents groups of about four
heavy atoms by CG sites. The MARTINI force field, originally developed
for lipids (Marrink et al., 2007), was later extended to proteins (Monticelli
et al., 2008; de Jong et al., 2012), carbohydrates (Lopez et al., 2009), and
some other types of molecules (de Jong et al., 2012; Marrink and Tieleman,
2013). Within the MARTINTI force field model, CG sites interact by the elec-
trostatic and Lennard-Jones potentials with parameters fitted to reproduce
experimental partitioning data between polar and apolar media. This func-
tional form of the force field is convenient as it coincides with that for the
atomistic simulations and is implemented in all major simulation packages,
but it may be also a source of problems with overstructuring of molecular
coordination and with consistent description of multicomponent systems,
which can in principle be solved by using softer (than Lennard-Jones) CG
potentials (Marrink and Tieleman, 2013). A complicating circumstance in
this respect is that (differently from atomistic models) even a functional
form of the effective interaction potentials is in many cases not known
a priori.



Inverse Monte Carlo Methods = 3

In the alternative bottom-up methodology, effective CG potentials are
derived from atomistic simulations. Atomistic force fields reflect the real
chemical structure of the studied system and they are generally more estab-
lished than CG force fields. Furthermore, the bottom-up methodology can
use as a starting point an even deeper, quantum-chemical level of model-
ing. Within the bottom-up methodology, a CG force field is parameterized
to fit some important physical properties that result from a high-resolution
(atomistic) simulation. Several bottom-up approaches to parametrize CG
force fields have been formulated recently. Within the force-matching
approach (Ercolessi and Adams, 1994; Izvekov et al., 2004), also called mul-
tiscale coarse-graining (Izvekov and Voth, 2005; Ayton et al., 2010)), the CG
potential is builtin a way to provide the best possible fit to the forces acting on
CGssites in the atomistic simulation. Within the inverse Monte Carlo (IMC)
technique (Lyubartsev and Laaksonen, 1995, 2004) and similar renormal-
ization group coarse-graining (Savelyev and Papoian, 2009b), as well as in
the related iterative Boltzmann inversion (IBI) method (Soper, 1996; Reith
et al.,, 2003), the target property is the radial distribution functions (RDFs)
as well as internal structural properties of molecules such as distributions of
bond lengths, covalent angles, and torsion angles. For this reason, methods
based on IMC or IBI techniques are called structure-based coarse-graining.
In the relative entropy minimization method (Shell, 2008; Chaimovich and
Shell, 2011), the CG potential is defined by a condition to provide minimum
entropy change between the atomistic and CG system, which is also equiv-
alent to minimizing information loss in the coarse-graining process. In
the conditional work approach (Brini et al., 2011), the effective potentials
between CG sites are obtained as free energy (potentials of mean force)
between the corresponding atom groups determined in a thermodynamic
cycle. More details of different bottom-up multiscale methodologies and
their analysis can be found in a recent review (Brini et al., 2013).

This chapter is devoted to the systematic coarse-graining methodology
based on the IMC method. Here, we discuss the term “inverse Monte Carlo”
only in application to multiscale coarse-graining, while there exists a more
general definition of “IMC” as a solution of any inverse problem by any type
of Monte Carlo (MC) technique (Dunn and Shultis, 2012). In Section 1.2,
the theoretical background, practical algorithms, problems, and possible
limitations of the approach are considered. Section 1.3 considers various
applications of the IMC methodology to the ionic systems, lipid assemblies,
DNA, and a few other systems. Finally, perspectives and possible limitations
of the methodology are discussed.
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1.2 MULTISCALE SIMULATIONS USING IMC
1.2.1 Theoretical Background

Generally, a problem of going from a high-resolution (atomistic) descrip-
tion to a CG one can be formulated as follows. Assume that at the high-
resolution level, the system is described by a Hamiltonian (potential energy)
H({r;}), where {r;},i = 1, ..., n are the coordinates of atoms. The potential
energy function represents typically the atomistic force field, but in the case
of ab-initio modeling it can represent the energy surface obtained within any
quantum-chemical computation method. A coarse-graining is described in

.....

of mapping functions R; = R, ({r;}). Often CG coordinates R; are center
of masses of groups of atoms united in CG site j, but they may just coincide
with coordinates of some selected atoms, or other choices can be made. The
original Hamiltonian H({r;}) defines all properties of the high-resolution
system, and through the mapping functions, all properties of the CG system.
The task is to define effective interaction potential for CG sites, which pro-
vide the same properties for the CG system as the properties which follows
from the CG mapping of the high-resolution system.

If only structural properties are a matter of interest, an exact formal
solution of the above formulated problem can be written in terms of N-body
potential of mean force. The N-body potential of mean force is obtained by
inclusion of the CG degrees of freedom into the partition function of the
original high-resolution system and subsequent integration over atomistic
coordinates:

z= J [ [ driexp(=pH(ir;)) =
n N i=1
= J [1ar J T T AR BCR; — Ry ({11 exp(-BH(U ;)
i=1 j=1

N
- JHde exp(—PHc({R;}) (1.1)
j=1

with p = 1/kzT and N-body potential of mean force (CG Hamiltonian)
Heg({R}) defined by

HeaIRD = 1 1n[ TT 48R, - Ry (D) exp(—BH(r Y (12)
=1
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A CG system with a Hamiltonian (Equation 1.2) has the same structural
properties (canonical averages) for the CG degrees of freedom as the under-
lying high-resolution system with the original Hamiltonian. Since the CG
and high-resolution systems have the same partition function, the thermo-
dynamic properties (average energy, free energies, pressure) can also be
reconstructed. The important point is, however, that the CG Hamiltonian
depends on the thermodynamic conditions (temperature, concentration)
and these dependences need to be taken into account while obtaining ther-
modynamic properties by derivation of the partition functions by the ther-
modynamics parameters. Reconstruction of the correct dynamics in the CG
system is a more challenging task. In addition to renormalization of the
Hamiltonian according to Equation 1.2, the dynamic equations of motion
need to be changed to the generalized Langevin equation with a mem-
ory function (Romiszowski and Yaris, 1991). Some practical approaches to
dynamic coarse-graining within dissipative particle dynamics can be found
in the literature (Eriksson et al., 2008; Hijon et al., 2010).

As discussed above, the N-body potential of mean force (Equation 1.2)
provides an exact solution of the coarse-graining problem; however, in prac-
tical terms simulations involving an N-body potential are infeasible. A com-
mon way to proceed is to approximate it by a more convenient expression,
for example, by a sum of distance-dependent pair potentials:

Heg(Ry, ... Ry) ~ Z Ve (Ry) (1.3)
i<j
with R; = |R; — Rj|. It is, however, not necessary to be limited by pair

potentials; any practically usable expression can be given in Equation 1.3,
for example, angle or torsion potential terms for macromolecular CG mod-
els, or some other simple forms expressing three or four body interac-
tions. From the computational point of view, we are first interested in
pair-wise approximations: the very aim of coarse-graining is computational
speed-up, and extensive use of many-body potentials would greatly hamper
this goal.

The task of building a CG force field can be thus reformulated to find
an “as best as possible” approximation according to Equation 1.3. Defini-
tions of what “the best approximation” can be, however, differ. Usually one
determines a set of target properties that one wish the CG model to keep.
These properties can be either of a microscopical character, as forces or
instantaneous energies, or canonical averages as RDFs, average energies, or
pressure. For example, minimizing the force difference coming from both
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sides of Equation 1.3 (weighted with the Boltzmann factor) is equivalent
to the force-matching method (Ercolessi and Adams, 1994; Izvekov et al.,
2004; Izvekov and Voth, 2005). Within the structure-based coarse-graining
approach, the target is various structural properties, such as RDFs as well as
distributions of internal degrees of freedom in complex molecules. In prin-
ciple, other properties of interest or any combination of them can be used
for parameterization of effective potentials.

1.2.2 IMC: Newton Inversion

The task of determining computationally feasible CG potentials can thus
be formulated in the following way (Lyubartsev et al., 2010). Assume our
effective potentials H({r;}) (we now remove index “CG” from the nota-
tions) are determined by a (finite) set of parameters ) and the set of tar-
get properties (which we know from the atomistic simulations) is {A™"}.
We assume here that the number of potential parameters y = 1,...,M is
equal to the number of target properties o = 1, ..., M. If we know the set of
{A, }, we can always compute average properties {(A,)} in direct molecular
dynamics (MD) or MC simulations. The inverse problem, finding parame-
ters {A, } from averages {(A,)}, is less trivial. We can consider the relation-
ship between {A,} and {(A,)} as a nonlinear multidimensional equation,
and use the Newton inversion method (known also as the Newton-Raphson
method) to solve it iteratively.

The method is based on the expression relating small changes of the
potential parameters A, and changes of the canonical energies (A,) caused
by these changes of the potential parameters:

A4y =) %AM + O(ANY) (1.4)
v

The matrix of derivatives % (Jacobian) can, by the use of statistical
Y

mechanics expressions for averages in canonical ensemble, be presented in
the following form (Lyubartsev et al., 2010; Wang et al., 2013a):

XA o JTIL, drau(y). () exp(=BH((r))
Iy by I, dryexp(—=BH({r;})

dA, OH oH
() () - (G yan) 0o
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Now the Jacobian is expressed in terms of canonical averages which all can
be evaluated by running direct simulation with a Hamiltonian defined by
a given set of parameters {), }. Equations 1.4 and 1.5 can be used to solve
the inverse problem iteratively. One starts from some initial potential deter-
mined by a trial set of parameters {7\30) }, runs a simulation, and computes

the deviation of computed values {(A&O))} from the target values A&ef:
AA,) = AT = {((AD)) (1.6)

We also compute a matrix of derivatives (Equation 1.5). Then, the system
oflinear equations (Equation 1.4) is solved neglecting second-order correc-
tions, resulting in corrected values of parameters A, :

(n+1) — 2 ()
AUD =40 4+ A, (1.7)

The procedure is repeated until convergence is reached. If initial approx-
imation {Kf{o) } is poor, some regularization of the iterative procedure might
be necessary, in which the difference in Equation 1.6 is multiplied by some
factor between 0 and 1.

While the Newton inversion procedure was depicted above for the tran-
sition from the atomistic to the CG level, it can work in the same way for the
connection between ab initio and atomistic levels, with the only difference
that the quantum-mechanical energy surface is used instead on the N-body
potential of mean force in Equation 1.3.

The Newton inversion algorithm can be straightforwardly implemented
if the number of potential parameters is equal to the number of target prop-
erties. If the number of properties exceeds the number of potential param-
eters, the problem can be solved in the variational sense, by finding a set of
{\, } which provides the least possible deviation of the computed properties
from the target values. Optimization using the same equations (Equation
1.5) can in this case be carried out according to the Gauss—-Newton algo-
rithm. This approach, under the name the force balance method, has been
recently implemented for parametrization of a water model from ab-initio
and experimental data (Wang et al., 2013a).

1.2.3 IMC: Reconstruction of Pair Potentials from RDFs

An important case of the general approach described above is when param-
eters {A, } are values of the pair potential in a regular set of points covering
the whole range of distances (i.e., the potential is given in a table form), and
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the target properties are values of the RDF in the same set of points. Then,
the inverse problem is reformulated as finding the pair interaction poten-
tial which reconstructs the given RDF. For a multicomponent case, a set of
pair interaction potentials is reconstructed from a set of RDFs between the
same CG site types. Even intramolecular interactions such as bond, angular,
and torsion potentials can be linked to the distribution of the corresponding
bond lengths, angles, and torsions and included in the inversion procedure.
The equations given in the previous section become equivalent in this case
to the IMC algorithm introduced previously (Lyubartsev and Laaksonen,
1995, 2004) and described below.

We consider a class of systems which is described by a Hamiltonian
(potential energy) in the following form:

H= )V, (1.8)

The Hamiltonian of any system with pair interaction can be presented
in such form when the pair potential is given by a set of tabulated values as
a step-wise function of distance:

Viry=V(r)=V,

for

ra—ﬁ<r<ra+L; Ty = (0 —0.5)r,

M; a=1,...M (1.9
i / (19)

ut
where r_,,, is some cutoft distance and M is the number of grid points within
the interval [0, ., ]. The S, values represent the number of particles pairs
with the distances found inside a-slice. Evidently, S, is an estimator of the
RDF: (S,) = 4nr’p(r)N?/(2V). Thus, the inverse problem is formulated
now as finding the values of the interaction potential in grid points V, from
RDFs expressed in averages (S, ).

With these notations, the Jacobian matrix of Newton inversion (Equa-
tion 1.5) becomes

XS _

oV,

—B ({SaSy) = (SuX(S,)) (1.10)

Here, indexes a,y are running over all interaction types (nonbonded,
bonded, angular), within each interaction type over all CG types of sites,
and for each set of CG types, over the relevant range of distances (or angles).
In all cases, average values of (S,) and cross-correlation terms (S,S,) can
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be acquired from a simulation of the CG system. In the inverse procedure,
one starts from a trial set of potentials (in practical simulations, one can
start either from zero or from mean force potentials), runs an MC simula-
tion, computes RDFs expressed in terms of average values of (S,) as well
as cross-correlation terms according to Equation 1.10, solves a system of
linear equations (Equation 1.4) (with substitution A, = V,and A, = S,),
obtains new corrections to the interaction potential AV, and repeats the
procedure until convergence.

Another approach to invert RDFs as well as bond or angle distributions
was described earlier by Schommers (1983), reintroduced by Soper under
the name empirical potential structure refinement method (Soper, 1996),
and become most known as the iterative Boltzmann inversion Reith et al.
(2003). As in the IMC method, one starts a simulation with some trial values
of the potential V", and corrects at each iteration the potential according to

(8¢
Sref

o

VD = VO 4 g, Tin (1.11)

Correction of potential according to Equation 1.11 is straightforward
to implement, and such an approach was used in a number of studies
(Shelley et al., 2001; Reith et al., 2003; Harmandaris et al., 2006; Carbone
etal.,2008; Wang and Deserno, 2010). In the IBI approach, correction to the
potential is determined only by the value of the same distribution function at
the same distance point, which is why the IBI approach faces convergence
problem in the multicomponent case (Hess et al., 2006a) where different
RDFs can be strongly interconnected. In practical calculation of CG poten-
tials by RDF inversion, it might be instructive to start the iterative process
using an IBI approach, which brings the system RDFs closer to the refer-
ence values, and then switch to IMC, which takes into account correlations
between different distribution functions and provides better convergence
when the RDFs become close to the reference functions.

It is known that for the relationship between pair potential and RDE
solution of the inverse problem is unique with the precision of an addi-
tive constant to the potential. This was proven previously by Henderson
for the monocomponent case (Henderson, 1974), and generalized later for
a multicomponent case and intramolecular interactions (Rudzinski and
Noid, 2011). On the other hand, the inversion problem for the RDF-pair
potential relation is often ill-defined; different potentials may in some cases
produce RDFs which are very close to each other (Soper, 1996). For this



10 = Coarse-Grained Modeling of Biomolecules

reason, the IMC and IBI approaches can produce different results for effec-
tive potentials while having RDFs undistinguishable by eye on a graph
(Riihle et al., 2009; Wang et al., 2013b). Still, even a small difference in
RDE, especially at large distances, may be of importance in correct repro-
duction of the Kirkwood-Buff integral (which is determined by expression
f 4nr*(g(r) — 1)dr), which is important for consistent description of ther-
modynamics of mixtures (Mukherji et al., 2012). Within the IMC approach,
the target function is proportional to r2g(r), which is why the Kirkwood-
Buff integrals are well reproduced in the CG simulations, while the IBI
method is less sensitive to the behavior of RDF at large distances, and may
need corrections in order to reproduce Kirkwood-Buff integrals accurately
(Ganguli et al., 2012).

1.2.4 Software

The IMC method is currently implemented in two open source software
packages: versatile object-oriented toolkit for coarse-graining applications
(VOTCA) (Riihle et al., 2009) and MagiC (Mirzoev and Lyubartsev, 2013).
The VOTCA package (which also implements force-matching and IBI
methods) uses GROMACS (Lindahl et al., 2001) as a sampling engine for
computations of necessary canonical averages at each iteration of the inverse
procedure. It analyzes the trajectory obtained by GROMACS with trial
potentials, computes necessary averages, and computes the updated tab-
ulated potentials to be used at the next iteration. A problem related to the
use of MD to sample system configurations during the IMC procedure is
that standard MD software such as GROMACS has certain requirements to
the smoothness of the used tabulated potentials while in the IMC procedure
the potentials may change unpredictably during the optimization procedure
and thus be a source of instability.

The MagiC package was developed specially to implement systematic
structure-based coarse-graining of arbitrary molecular models using the
IMC or IBI methodology. As input, MagiC uses atomistic trajectories gen-
erated by any simulation software, from which it computes necessary refer-
ence RDFs between CG sites as well as bond and angle distributions. MagiC
has its own MC multithread sampling engine which can run simultaneously
many copies of the simulated system on each available processor/core. Sim-
ulations are run for a trial set of CG potentials, which may include non-
bonded interactions between all CG site types, as well as bonded and angle
intramolecular interactions. The electrostatic interactions are taken out of
the inversion scheme and are treated by the conventional Ewald summation
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method (Allen and Tildesley, 1987). The program evaluates the canonical
averages necessary for RDF inversion (Equation 1.10) by averaging results
generated from all the threads and computes updated potentials which are
distributed back to all the threads. The use of multithread methodology
improves the quality of sampling, resulting in better stability and faster
convergence of the iteration procedure. Recently, MagiC has been used for
computations of effective potentials for CG models of lipids (Mirzoev and
Lyubartsev, 2014), CG DNA and solvent-mediated DNA-ion interactions
(Korolev et al., 2014; Naomé et al., 2014), and a CG model of an ionic liquid
(Wang et al., 2013b).

1.3 APPLICATIONS OF THE IMC
1.3.1 Simple Electrolytes

As afirst example of application of the IMC methodology, we consider com-
putations of effective solvent-mediated potentials of ions in aqueous solu-
tion (Lyubartsev and Laaksonen, 1995, 1997). We recapitulate this study
here because of its simplicity and instructive character. One of the typical
approximations used in the description of macromolecules and particularly
polyelectrolytes is substituting of solvent molecules by a continuum media.
For example, in the continuum (called also primitive) electrolyte model,
ions in water are substituted by charged spheres moving in dielectric media
with a proper dielectric constant. Evidently, this is a serious simplification
at a small (a few A) distance between the ions where it is impossible to
define a dielectric constant in a consistent manner. Moreover, an ion radius
(in terms of hard sphere, or softer repulsive r~!2 or = potential) within
the continuum electrolyte model is an adjustable parameter without clear
physical meaning.

A better model of effective ion-ion interactions in aqueous solu-
tion must take into account the solvation structure of water around the
ions. Practically, effective solvent-mediated ion-ion potentials may be con-
structed by the IMC method from ion-ion RDFs, generated in high-quality
atomistic MD simulations of ions in water. This approach has been already
implemented in the first paper describing the IMC technique (Lyubartsev
and Laaksonen, 1995). In subsequent publications (Lyubartsev and Laakso-
nen, 1997; Lyubartsev and Marcelja, 2002; Mirzoev and Lyubartsev, 2011),
the effective-solvent mediated potentials for NaCl aqueous solution have
been calculated with greater precision as well as for a number of concentra-
tions and temperatures.
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An example of computation of solvent-mediated ion-ion potentials for
NaCl aqueous solution is illustrated in Figure 1.1. The underlying MD sim-
ulations have been performed for the flexible simple point charge (SPC)

RDF

r(A)
()

Eff. pot. /KT

0 A 5 10 15 20

FIGURE 1.1 (a) and (b) Radial distribution functions (RDFs) between Na* and Cl~ ions
in water computed from atomistic simulations at temperature 298 K and ion concentration
0.5 M (Lyubartsev and Laaksonen, 1997), and corresponding effective potentials derived
from these RDFs by the inverse Monte Carlo (IMC) method. Dotted lines show Coulombic
potential at dielectric permittivity 80. (Compiled from data in Lyubartsev, A. P. and
A. Laaksonen, Phys. Rev. E, 55, 5689-5696, 1997.)
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water model (Toukan and Rahman, 1985) and Smith-Dang parameters
for Na* and CI~ ions (Smith and Dang, 1994) resulting in the ion-ion RDFs
shown in Figure 1.1a. They were fed into an IMC procedure resulting in
effective potentials between the ions shown in Figure 1.1b. The effective
potentials make one to two oscillations, thereby reflecting the molecular
nature of the solvent, and then finally approach the primitive model poten-
tial with dielectric constant close to 80. With distances more than 10 A, the
effective potentials almost perfectly coincide with the Coulombic potential.
These characteristic features of ion—ion solvent-mediated potentials were
also observed in other works (Hess et al., 2006a,b; Savelyev and Papoian,
2009a).

An important issue of CG effective potentials is their state-point depen-
dence, which originates in integration over “nonimportant” degrees of free-
dom (see Equation 1.1). Studies of solvent-mediated ion-ion potentials
showed that they do depend both on the ion concentration (Lyubartsev and
Laaksonen, 1997) and on the temperature (Mirzoev and Lyubartsev, 2011).
It was, however, shown that most of this dependence can be taken care of by
introducing concentration (Hess et al., 2006b) and temperature-dependent
(Mirzoev and Lyubartsev, 2011) dielectric permittivity. This can be done by
considering the short-range part of the effective potential,

4i9;
4me,er

V() = Vi (1) — (1.12)
and optimizing dielectric permittivity € by the requirement that the short-
range part of all three ion-ion potentials be most close to zero at distances
outside 10 A (or a similar cutoff distance). Besides definition of the trans-
ferable short-range part of the effective potential, this approach provides
also an alternative definition of effective dielectric permittivity of a solvent.
It was demonstrated in a paper (Mirzoev and Lyubartsev, 2011) that such
a definition of the dielectric constant is consistent with conventional com-
putations of dielectric permittivity from the dipole moment fluctuations, as
well as with experimental data.

1.3.2 CG Lipid Model

Simulations of lipid membranes and other self-assembled structures have
attracted much attention during the last decade due to the fact that lipid
membranes form the outer shells of living cells (Lyubartsev and Rabinovich,
2011). However, atomistic simulation of even a relatively small piece of
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membrane consisting of a few hundred lipids and surrounding water is
a computational challenge, while many actual biophysical problems, such
as studies of inhomogeneous membrane mixtures, membrane mechani-
cal properties, association and partitioning of polypeptides, nanoparticles,
other membrane bound compounds, etc., require consideration of substan-
tially larger membrane fragments. For investigation of all these phenomena
in molecular simulations, a coarse-grain level of modeling provides practi-
cally the only possible choice.

A large variety of various CG models of lipids differing by the level of
detail and the way of defining CG potentials have been reported in the last
two decades (Drouffe et al., 1991; Goetz and Lipowsky, 1998; Shelley et al.,
2001; Murtola et al., 2004; Marrink et al., 2004; Lyubartsev, 2005; Cooke
and Deserno, 2005; Izvekov and Voth, 2005; see also the reviews of Pandit
and Scott, 2009; Shinoda et al., 2012). In several cases, interaction poten-
tials were determined within a systematic bottom-up approach from atom-
istic simulations, using IBI (Shelley et al., 2001), force matching (Izvekov
and Voth, 2005), and IMC (Lyubartsev, 2005). In one work (Lyubartsev,
2005), a dimyristoylphosphatidylcholine (DMPC) lipid was CG to a
10-site model (see Figure 1.2). The CG site-site RDFs as well as CG bond-
length distributions were computed from atomistic MD simulations of 16

®
%
ORG

All-atom model Coarse-grained model
118 atoms 10 sites

(@) (b)

FIGURE 1.2 Atomistic (a) and coarse-grained (b) lipid models. (With kind permission
from Springer Science+Business Media: Eur. Biophys. J., Multiscale modeling of lipids and
lipid bilayers, 35, 53, 2005, Lyubartsev, A. P.)
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lipids dissolved in water and described by the CHARMM?27 force field,
and were inverted simultaneously within the IMC procedure, resulting
in 10 nonbonded potentials between four different types of CG sites and
four bonded potentials. The resulting CG model has showed the ability to
reproduce a bilayer structure consistent with atomistic simulations, and to
describe self-assembly of lipids into bicell as well as the formation of spher-
ical vesicle structures (Figure 1.3).

In subsequent development (Mirzoev and Lyubartsev, 2014), the effec-
tive potentials derived in work (Lyubartsev, 2005) were reparameterized
after recomputation of CG site-site RDFs according to recent modifica-
tion of the CHARMM?27 force field described in Hogberg et al. (2008).
This modification of the CHARMM force field has been done with a pri-
mary aim to improve agreement with experiments for atomistic simula-
tions of the lipid bilayer, and to reproduce correctly average area per lipid

20 N 307 N-CO——
I | =
15 ¢ .\ - 20 \‘ P-CH
=100 | < 10 ¢
= \ = \
= 50 LN 2 5|
e e . RS i
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20 L ‘ ' ‘ T co-co—— 30
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}
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5t -5
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FIGURE 1.3 Potentials for various atom pairs are shown in panels (a)-(d). Effective poten-
tials for the coarse-grained (CG) lipid model displayed in Figure 1.2 computed by the IMC
method from RDF and bond-length distributions determined in atomistic simulations.
(With kind permission from Springer Science+Business Media: Eur. Biophys. J., Multiscale
modeling of lipids and lipid bilayers, 35, 53, 2005, Lyubartsev, A. P.)
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in particular. Atomistic simulations of DMPC lipid mixtures with water at
different molar ratios were run up to 400 ns in order to ensure reliable
converged RDFs. The set of intramolecular potentials of previous work
(Lyubartsev, 2005) was complemented by angular potentials determined
from distribution of relevant angles between CG sites. It was found that
effective potentials obtained from atomistic simulations carried out at dif-
ferent concentrations, and properties of lipid bilayers simulated using these
potentials, show nonnegligible concentration dependence. Thus, potentials
based on low lipid concentration overestimate the effective hydrophobic
attraction of the lipid tails, which favors a more gel-like and more ordered
structure of the bilayer. The potentials based on higher lipid concentration in
the atomistic simulations provide more fluid-like structure with larger area
per lipid. The best agreement with reference data as well with experiment
was achieved with a set of potentials derived from atomistic simulations at
1:30 lipid:water molar ratio, which also provides full saturating hydration of
the DMPC headgroup in the bilayer. Comparison of some characteristics of
the DMPC lipid bilayer obtained in atomistic and CG lipid models is given
in Table 1.1.

Despite a certain degree of the state-point dependency of the effective
potentials, all the derived potentials obtained in conditions of unordered
lipid—water mixture provided a stable bilayer structure with correct parti-
tioning of different lipid groups across the bilayer as well as with accept-
able values of the average lipid area, orientational tail ordering, and

TABLE 1.1 Comparison of Some Properties of Lipid Bilayer Obtained in Atomistic and
CG Simulations for Four CG Models Derived by IMC from Atomistic Simulations at
Different Concentrations.

Model A (A% K, (mN/m) D (A) s1 s2
CG 1:100 49.1 910 38.8 0.73 0.70
CG 1:50 50.1 910 40.2 0.77 0.77
CG 1:30 59.7 370 38.0 0.57 0.52
CG 1:20 65.7 190 376 0.52 0.45
Atomistic 60.0 250 39.6 0.58 0.52

Source: Mirzoev, A. and A. P. Lyubartsev, J. Comput. Chem., 35, 1208-1218, 2014.

Note: A, average area per lipid; K,, compressibility; D, membrane thickness determined
from the distribution maxima of N-sites; S1 and S2, order parameters defined by
vectors connecting CO and the second CH sites, and the first and the third CH sites
of lipid tails, respectively. For details, see Mirzoev and Lyubartsev (2014).
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compressibility. They also demonstrated the ability of CG lipids to self-
assemble in bilayer, bicell, or vesicle structures depending on simulation
condition as is, e.g., displayed in Figure 1.4. This behavior of the CG
lipid model, derived using an IMC approach, was reached without use of
any additional information except that which was available from atomistic
simulations.

1.3.3 CG DNA Models

The DNA molecule was studied by computer simulations methods for
many decades. DNA is a strongly charged polyelectrolyte, and under-
standing of many properties, including DNA packing in the cell nuclei,
requires proper description of both long-range electrostatic interactions

K

FIGURE 1.4 Trajectory snapshots are shown in panels (a)-(d), as the CG simulation is
evolved in time. Formation of a bicell from initially random distribution of CG lipids
observed in Langevin molecular dynamics simulations of work. (From Mirzoev, A. and A.
P. Lyubartsev. Systematic implicit solvent coarse graining of dimyristoylphosphatidylcholine
lipids. J. Comput. Chem. 2014. 35. 1208-1218. Copyright Wiley-VCH Verlag GmbH & Co.
KGaA. Reproduced with permission.)
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and chemical (atomistic) details of DNA interactions with surrounding
molecules including ions and histones (Korolev et al., 2012). This neces-
sitates the use of multiscale approaches when continuum solvent CG mod-
els are robust enough to catch the atomistic chemically specific details and
effect of water hydration.

In one paper (Lyubartsevand Laaksonen, 1999), the IMC approach was
used to derive effective solvent-mediated potentials between alkali ions and
sites of CG DNA model where each nucleotide was presented as three sites
representing phosphate, base, and sugar. The RDFs between ions and these
sites used as an input to the IMC procedure were computed in atomistic sim-
ulations of a DNA fragment in ionic solution. The DNA periodic fragment
used in this study was fixed, and the obtained ion-DNA solvent-mediated
potentials were used to model binding affinity of different alkali ions to
DNA.

A flexible CG DNA model, presented as two connected helical chains
representing DNA phosphate groups, was considered in a series of works
from the Papoian group (Savelyev and Papoian, 2009b, 2010; Savelyev et al.,
2011). Both solvent-mediated ion-DNA and internal DNA interactions
were determined from the structural information obtained in atomistic sim-
ulations of DNA in aqueous ion solution using the molecular renormaliza-
tion group approach, which is in most details equivalent to the IMC method.
This model was used primarily to study DNA persistence length at different
ion conditions. A similar DNA-ion model has been considered in a recent
paper (Naomé et al., 2014) with ion-CG DNA and internal DNA interac-
tions computed by the combined iterative Boltzmann/IMC method from
atomistic simulations of a DNA oligonucleotide.

A CG DNA model considered in a recent study (Korolev et al., 2014)
included, along with CG sites representing phosphate groups, space filling
sites located along DNA axis with each such site representing two base pairs
(see Figure 8.5a). The internal structure of DNA was maintained by three
bond and three angular potentials between neighboring CG sites. The ref-
erence atomistic simulations were carried out for four DNA nucleotides
which gave the possibility to extract effective DNA-DNA site-site inter-
actions which are intended to be used in perspective studies of nucleo-
some folding. It was also found in a paper (Korolev et al., 2014) that the
internal DNA potentials can be well fitted to harmonic potentials, which
gives the possibility to describe the internal CG DNA interactions in terms
of a standard molecular mechanics force field implemented in most MD
software.
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In another recent work (Biase et al., 2014), the IMC approach was used
to parametrize effective potentials for the CG model of a single-strand DNA
with CG sites representing phosphate, sugars, and four distinguishable types
of DNA bases. The obtained model was used to describe longtime dynamics
of a single-strand DNA in a nanopore.

1.3.4 Other Systems

Besides computations of effective potentials for CG models, there were a
few attempts to use the IMC approach to derive atomistic potentials from
ab-initio (Car-Parrinello type) simulations. In on paper (Lyubartsev and
Laaksonen, 2000), the RDFs between the O and H atoms of water, obtained
in Car-Parrinello molecular dynamics (CPMD) (Car and Parrinello, 1985)
simulations of 32 water molecules, were inverted to produce atomistic inter-
action potentials which turned out to be very similar to potentials of conven-
tional SPCand TTIP3P water models. Later unpublished studies have showed,
however, that a “ab-initio” derived water model could not compete with the
traditional empirically parametrized water models mainly because of defi-
ciencies in the density functional theory (DFT) functionals used in CPMD
simulations. In another work (Lyubartsev et al., 2001), CPMD simulations
of a Li* ion in water were used to extract the interaction potential between
the Li* ion and water oxygen. The nonelectrostatic part of the Li* -O poten-
tial was found to be well approximated by an exponential function like the
one used in the Buckingham potential (see Figure 1.5). The ab-initio derived
model of Li* ion interaction was further used in MD simulations of a LiCl
solution (Egorov et al., 2003).

The IMC method in two dimensions was used in a work (Murtola et al.,
2007) to study domain formation in a lipid bilayer containing cholesterol.
Two-dimensional RDFs of lipids and cholesterol center-of-masses projec-
tions to XY plane were determined in atomistic simulations, and were then
used to determine effective potentials for a two-dimensional model of a
lipid-cholesterol mixture. This two-dimensional model was further used
to study formation of cholesterol-rich and cholesterol-poor domains in a
mixed lipid—cholesterol bilayer.

In Wang et al. (2013b), the IMC method was used to build poten-
tials for a CG model of Bmim*-PF, ionic liquid. The Bmim* cation of
ionic liquid was presented as three beads and the PF_ anion as a single bead
as depicted in Figure 1.6. As in other cases, RDFs for the IMC procedure
were obtained in atomistic simulations of this system. The obtained effective
potentials were used in large-scale simulations of Bmim™ -PF ionicliquid in
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FIGURE 1.5 Short-range part of the effective LiO potential. Solid line—derived from
ab initio simulation using the inverse Monte Carlo; bold dashed line—exponential fit; and
other lines—potentials from other works, see Lyubartsev et al. (2001) for details. (Reprinted
with permission from Lyubartsev, A. P. et al., J. Chem. Phys., 114, 3120. Copyright 2001,
American Institute of Physics.)
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FIGURE 1.6 Coarse-graining scheme of Bmim*-PF; ionic liquid. (From Wang, Y.-L.
et al., Phys. Chem. Chem. Phys., 15, 7701, 2013. Reproduced by permission of The Royal
Society of Chemistry.)

which, among other properties, experimental x-ray scattering factors were
reproduced.

A few other examples of using IMC for reconstruction of interaction
potentials from RDF can be mentioned: computation of effective potentials
between charged colloids (Lobaskin et al., 2001), single-site water model
(Eriksson et al., 2008), proline molecules in dimethyl sulfoxide (DMSO)
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solvent (Lyubartsev et al., 2010). In Zhang and Berkowitz (2009), atomistic
interaction potentials in Ag-Rh were determined by IMC from RDFs
obtained from experimental scattering data.

1.4 FINAL REMARKS

In this chapter, the IMC methodology to extract interaction potentials from
the structural properties of a molecular system (RDFs, bond and angles

distributions) has been presented and its role in multiscale modeling is dis-
cussed. Examples given in this chapter show that the method is very general
and can find applications for a very wide variety of molecular and macro-
molecular systems. In principle, the IMC method can serve as a key element
in the systematic hierarchical multiscale modeling approach, which starts
from ab-initio level, produce interaction potentials for classical atomistic
simulations, and then proceed to different levels of coarse-graining. It might
be, however, unrealistic to believe that the approach can produce CG mod-
els suitable for large-scale macromolecular simulations completely in an
ab-initio manner, so experimental input as well as experimental validation
will be always necessary. There are several reasons for this: the approximate
nature of DFT functionals or atomistic force fields used at the starting stage;
limited sampling of the phase space during RDF calculations; and inherent
limitations of the coarse-graining procedure itself which in a typical case
neglects high-order terms in the N-body potential of mean force. Transfer-
ability of the CG potentials, that is, their dependence on the temperature,
concentration, and composition of the system, may be a serious issue. In
some cases, like in ionic solutions, temperature and concentration depen-
dence of the effective potentials can be effectively included into effective
dielectric permittivity (Hess et al., 2006b; Mirzoev and Lyubartsev, 2011);
in other cases, such as in a CG lipid model (Mirzoev and Lyubartsev, 2014),
transferability studies need to be carried out. A reasonable strategy to con-
struct effective potentials for CG models might be to determine the gen-
eral form of the effective potential using IMC or other type of bottom-up
coarse-graining, and then fine-tune parameters of the potential to fit avail-
able experimental data. The IMC methodology presented here would help
to increase the fraction of “ab initio” derived features in CG molecular mod-
els at the expense of “empirically fitted” or “ad hoc” ones, which would
enhance the predictive character and reliability of large-scale molecular
simulations and advance them further to problems not yet covered within
today’s molecular simulation techniques.
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