
MagiC: Software package for Multiscale

Coarse-Grained Modelling.

User guide.

Version 2.0

Alexander Mirzoev1,2,3, Alexander Lyubartsev3,4

March 8, 2016

Abstract

MagiC is a software package designed to perform systematic structure-
based coarse graining of molecular models. The effective pairwise poten-
tials between coarse-grained sites of low-resolution molecular models are
constructed to reproduce structural distribution functions obtained from
the modelling of the system in a high resolution (atomistic) description.
The software contains tools to read atomistic trajectories generated by
different simulation packages, create a coarse-grained trajectory, compute
for it radial distribution functions as well as distributions of intramolecu-
lar bonds and angles, and then find effective potentials which reproduce
these distributions in coarse-grained modeling. The software supports
coarse-grained tabulated intramolecular bond and angle interactions, as
well as tabulated non-bonded interactions between different site types in
the coarse-grained system, with the treatment of long-range electrostatic
forces by the Ewald summation. Two methods of effective potentials
refinement are implemented: iterative Boltzmann inversion and inverse
Monte Carlo, the later accounting for cross-correlations between pair in-
teractions. MagiC uses its own Metropolis Monte Carlo sampling engine,
which is efficiently parallelized providing fast convergence of the method
and nearly linear scaling at parallel execution. The finally generated tra-
jectories can be exported back to other software formats (e.g. Gromacs)
for subsequent large scale simulations.

1School of Biological Sciences, Nanyang Technological University, Singapore.
2e-mail: amirzoev@ntu.edu.sg
3Division of Physical Chemistry, MMK, Stockholm University, Stockholm,

SE-10691, Sweden.
4e-mail: alexander.lyubartsev@mmk.su.se

1

Contents

1 What’s new 4
1.1 Version 2.0 . 4

2 Installation and setup 4
2.1 Getting started . 4
2.2 Fast Installation . 4
2.3 Environment variables . 5
2.4 Manual Compilation . 5

2.4.1 CGTraj . 5
2.4.2 Magic-core . 5
2.4.3 RDF and MagicTools . 6

3 Using MagiC 6
3.1 Basic principles of the coarse-graining procedure 6
3.2 CGTRAJ : Bead Mapping . 8

3.2.1 Input/output files: . 9
3.2.2 cgtraj.inp: main input file 9
3.2.3 Example: cgtraj.inp . 11

3.3 rdf.py : Reference Distribution Functions calculation 12
3.3.1 rdf.inp: main input file . 14
3.3.2 Example: rdf.inp . 16

3.4 MagiC core: Inverse Solver IMC/IB 17
3.4.1 General description . 17
3.4.2 Input/Output files . 18
3.4.3 magic.inp: main input file 19
3.4.4 Example: magic.inp . 22

3.5 MagicTools : Juggle with MagiC’s data 23
3.5.1 Reading the data . 23
3.5.2 Plotting and Inspecting the data 24
3.5.3 Numerical analysis of the potentials 25
3.5.4 Saving the data . 25
3.5.5 Exporting potentials: GROMACS 25

3.6 MagicTools procedures reference: 26
3.6.1 ReadRDF . 26
3.6.2 ReadPot . 26
3.6.3 ReadMagiC . 26
3.6.4 LoadDFs . 27
3.6.5 PlotAllDFs . 27
3.6.6 DFset.Plot . 28
3.6.7 Deviation . 29
3.6.8 AnalyzeIMCOuput . 29
3.6.9 TotalPots . 29
3.6.10 GetOptEpsilon . 30
3.6.11 PotsEpsCorrection . 31
3.6.12 PotsPressCorr . 31
3.6.13 SaveDFsAsText . 32
3.6.14 DumpDFs . 32
3.6.15 SplitDFset . 32

2

3.6.16 GromacsTopology . 32
3.6.17 PotsExport2Gromacs . 33
3.6.18 xmol2gro . 35
3.6.19 gro2xmol . 36
3.6.20 tpr2mmol . 36
3.6.21 Convert2NewFile pot . 36
3.6.22 Convert2NewFile rdf . 36
3.6.23 DFset - set of Distribution Functions 36
3.6.24 DF - Distribution Function 37

4 File formats 38
4.1 .xmol . 38
4.2 .mmol . 39

4.2.1 MMOL Example: H2O.mmol 39
4.3 .mcm . 40

4.3.1 MCM Example: DMPC.CG.mcm 41
4.4 .rdf and .pot file formats . 43

4.4.1 Header . 43
4.4.2 RDF/potential record: 43
4.4.3 Included Potential/RDF 44

3

1 What’s new

1.1 Version 2.0

New functionality: Possibility to fix/protect certain interaction potentials
from correction, i.e. exclude a potential from update within the inverse
procedure, is introduced. This gives possibility to use potentials parametrized
previously in other simulations, and calculate only those potentials that
yet missing in the new system.

New file formats: A new file format (compared to versions 1.*) for RDFs/potentials
is introduced and old formats are depreciated (the conversion tools are
provided). A new format is also introduced for MagiC-core input file,
while keeping limited compatibility with the old format. The new input
file format is a free text based, case insensitive and supports comment
lines (starting with ! or #) and empty lines. The total number of param-
eters was reduced and the parameters got more self-explanatory names.
The old parameter names are supported as well. The RDF calculation
tool rdf.py also got a revised format of the input file, which provides au-
tomatic generation of the atom pairs lists used for each specific RDF. The
new rdf.py is completely written in Python (the Fortran part was over-
taken by numpy), which made it faster and also removed compatibility
issues with MacOS.

Improved error reporting: The error reporting was significantly improved
and became (hopefully) more tolerant to the user-provided input.

2 Installation and setup

2.1 Getting started

Download and unpack the latest stable version of the software from
http://mmkluster.fos.su.se/magic/

or get a copy from the repository:
hg clone https://bitbucket.org/magic-su/magic-2

This will create folder magic-2.x, containing the whole software. Below we
refer to MagiC as a full path to the folder at your computer.

The following software is required for the python-based part: python (usually
present), numpy, matplotlib and ipython.

If you are using Ubuntu, just add these packages:
sudo apt-get install ipython python-numpy python-matplotlib

To compile the Fortran-based core part of MagiC, a Fortran compiler (sup-
porting at least Fortran-95 standard) is needed. We recommend Intel Fortran
or Oracle Solaris Studio, since they produce faster binaries, but GNU Fortran
is also an acceptable choice. Lapack library is required. For compilation of the
program for parallel execution, MPI library is required.

2.2 Fast Installation

Run install.sh script. That is it!

4

http://mmkluster.fos.su.se/magic/
http://numpy.scipy.org
http://matplotlib.sourceforge.net
http://ipython.org

By default, fast installation script uses GNU Fortran compiler and compiles
MagiC-core in serial (non-MPI) version. If you want to specify different com-
piler/options you need to uncomment corresponding lines in the installation
script:

Open file install.sh for editing. Find install CGTraj and install MagiC
sections and uncomment the lines with make option corresponding to your For-
tran compiler and MPI-library.

Run the script. It will result in compilation of subparts of the package,
linking executable in folder $MAGIC/bin and exporting PATH, LD_LIBRARY_PATH
and PYTHONPATH environment variables. If you face errors during execution of
install.sh, you can try to compile MagiC manually step by step as described in
the Manual compilation section below.

2.3 Environment variables

The simplest way to setup the necessary environmental variables and get access
to the compiled executables and libraries is to use the script setvars:
source setvars.sh (if you use bash)
or
source setvars.csh (if you use tcsh)

Otherwise you can set the values in startup files of your shell such as $HOME/.bashrc
in case of interactive session or .profile in case of remote login session, or
.tcshrc if you use tcsh

For bash, add the following lines (specify the location of MagiC in the first
line):

Define location of MAGIC below.

MAGIC=<PATH_TO_LOCATION_OF_MAGIC>

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MAGIC/MagicTools/xdrfile-1.1.1

export PYTHONPATH=$MAGIC/MagicTools/xdrfile-1.1.1/src/python:$PYTHONPATH

export PYTHONPATH=$MAGIC/MagicTools:$MAGIC/MagicTools/lib:$PYTHONPATH

export PATH=$PATH:$MAGIC/bin

If you use tcsh, set up the same environmental variables using setenv di-
rective.

2.4 Manual Compilation

2.4.1 CGTraj

Enter folder CGTraj-1.3 and run make specifying the compiler as an argument
to make, e.g. make intel for Intel Fortran, make oracle for Oracle Solaris
studio, or make gfortran for GNU Fortran (default option), or edit one of the
available Makefiles. If compilation went successfully you get an executable file
called cgtraj.

2.4.2 Magic-core

To compile this part of the package, you need a Fortran compiler and LAPACK
linear algebra library. Lapack is included in Intel MKL which comes with Intel
Fortran and it is also included in Oracle Solaris Performance Library, which

5

comes with Oracle Solaris Studio. Other option is GNU Fortran (gfortran) and
a repository build of Lapack (liblapack-dev). If you have any of them just use
corresponding Makefile for compilation or use make with argument, for example
make intel. Run make to see all options available.

For better performance it is highly recommended to compile and run MagiC
in the parallel mode. To do so you need a MPI-library installed. Examples
of open-source MPI libraries for which MagiC was tested are OpenMPI, and
Mpich. For compilation of MagiC in the parallel mode, use one of Makefiles
Makefile.gfortran-mpi, Makefile.intel-mpi or Makefile.oracle-mpi, or
adopt one of these files to the specific combination of Fortran compiler and
MPI-environment on your computer.

The result of successful compilation is a binary file magic with possible
extentions describing compilation conditions, which you can copy/link to your
default bin folder.

2.4.3 RDF and MagicTools

These parts of the package are written in Python and do not require explicit
compilation, you need only to link file rdf.py to your default bin folder and
add MagicTools and MagicTools/lib folder to your PYTHONPATH environment
variable.

To check if the library is added successfully, open terminal, run ipython and
load the library:
import MagicTools

If no error message appeared, the RDF and MagicTools modules are correctly
connected.

For reading binary CG trajectories produced by GROMACS (.xtc and .trr)
the RDF utility relies on xdrfile library, which need to be compiled. To compile
it, enter MagicTools/xdrfile-1.1.1 folder and run
./configure --enable-shared

You can also specify exact location for the compiled library files by adding
--prefix=/path/to/library/folder

to the configure arguments. Build the library by make install. If you have
specified non-default location for the library, add it to the LD LIBRARY PATH
environment variable.

Finally, add python wrapper for the library in PYTHONPATH:
export PYTHONPATH=$MAGIC/MagicTools/xdrfile-1.1.1/src/python:$PYTHONPATH

3 Using MagiC

3.1 Basic principles of the coarse-graining procedure

MagiC is a software package designed to perform tasks of multiscale structure
based coarse graining in molecular simulations. This is done by extracting
radial distribution functions (RDF) and other structural information from a
high resolution (fine grained) simulation of the system of interest (reference
system), and then to generate effective potentials which reproduce these RDFs
in a coarse-grain model by means of the inverse Monte-Carlo method or Iterative
Boltzmann inversion method. Such potentials can be further used for large scale
simulation.

6

http://www.open-mpi.org
http://www.mpich.org
http://www.gromacs.org
http://www.gromacs.org/Developer_Zone/Programming_Guide/XTC_Library

In general systematic coarse graining can be considered as a multi-stage pro-
cess which leads from a high resolution system description to the low resolution
one (see figure 1).

���������	
��
�
��
����
�����
������
���

����
�
�
��
�
��
�

��������������
��	���
���

���������� �������

���������	
��
�
��
���
������
	�����
�	�

����	
�����������
�
��
��
�

!�	����	�
�� ����

�
���������"���	�
�
��"
���

#�"�������$��	���%	�
��&%��	�
���

����%��	�
� ����	
���
�

!���'�!(! ������

����
�
�
��
�
���

#�"�������&%��	�
�����
�

�
��"

)	��	�����
	��	�����*
�	
+
�
�
	

,""��	�-���
	��	����
�
�
	���
�-�

.��������������%��	�
�

*.
/����
�%	�
���
���+

!��'!(��
��"���
�����

%	���
����

.
��"�������������*
�	
+

����������

�����	
�����%��	�
��

*0�������
�%	�
���
���+

!�-������
�-���������	���

������������������	�����
�����
���

Figure 1: Systematic Coarse-Graining with MagiC: General outline. Blue rect-
angles denote input/output data; purple rectangles denote data processing pro-
cedures. Optional input data and use of external software are marked with
dashed frame.

7

Each step (shown in purple) uses results of the preceding stage output as an
input (input/output is shown in blue), and additional input provided by user
(rightmost blue blocks).

Five stages can be distinguished:

1. The system of interest is simulated at high resolution, e.g. using Molec-
ular Dynamics simulation with all-atom (AA) force field. Such a simula-
tion results in atomistic (AA) trajectory which is supposed to sample the
atomistic system well enough. This simulation can be performed by any
suitable external molecular dynamics (or Monte Carlo) software.

2. A coarse-grained (CG) trajectory is generated from the atomistic trajec-
tory obtaned during the first stage. This is performed by utility cgtraj

which is a part of MagiC. It converts AA-trajectory into CG-trajectory,
using a user provided mapping scheme which states the correspondence
between atomistic and CG representations for every molecular type. This
stage results in a coarse-grained trajectory and mass/charge properties of
CG-beads stored in molecular description files (.mmol).

3. Structural reference distribution functions are calculated by utility rdf.py .
Since every distribution function corresponds to a specific interaction, def-
initions which interactions and bonds are present in the CG system are
defined at this stage.

4. The inverse problem is solved by the Inverse Monte Carlo or Iterative
Boltzmann Inversion methods. This is the key stage, which is done by a
core of the package which is called magic core. During this stage, effec-
tive potentials between CG sites are iteratively refined to fit the RDFs
obtained in atomistic simulations. Also, an extended log-file is generted
which reports details of every IMC/IBI iteration. The files can be ana-
lyzed by a set of post-processing tools MagicTools, which allow to plot
the convergence rate, effective potentials from each iteration, potential
corrections at each iteration, intermediate RDFs, etc.

5. Once the effective potentials reproducing the reference RDFs with required
precision are obtained, they can be exported by MagicTools to an external
MD software and used for further simulations of the large scale CG system.
At the moment export to GROMACS format is provided, extentions to
other mesoscale simulation software accepting tabulated potentuals can
be made relatively straightforwardly.

Since MagiC is implemented as a set of separate programs, it is possible
to perform different tasks on different computers, for example run the most
time-consuming part of the calculations, inversion of RDFs (stage 4), on a high
performance cluster, and perform analysis on a local desktop computer.

3.2 CGTRAJ : Bead Mapping

This is a tool to map/convert a high resolution (all-atom) trajectory to a coarse-
grained trajectory.

8

3.2.1 Input/output files:

Input files:

*Trajectory For reading trajectories, MagiC uses trajectory reading interface
inhereted from MDynaMix molecular dynamics package. The following
formats are supported:

XMOL - Text-based XYZ trajectory format *.xmol.

PDB - Text-based trajectory format *.pdb

MDYN - MDynaMix trajectory binary format. It is usually given as a set of
numerated files *.001,*.002, etc.

DCD - CHARMM/NAMD binary trajectory file format: *.dcd

Each of these types of trajectory can be presented as a set of files with
extentions *.001,*.002,*.003,...

It is supposed that in all cases, the atoms and molecules are arranged in
the following way:

<molecules of type 1><molecules of type 2>...

in each molecule type:

<molecule 1><molecules 2>...

in each molecule:

<atom1><atom2>... (the same atom order must be in all molecules of this
type)

*Molecular type descriptions for each type involved: *.mmol files (optional,
see detailed description below).

*Main input providing the mapping scheme, input trajectory and output files
parameters.

Output files:

CG trajectory in XMOL format.

CG molecular types descriptions in .mmol format, but without bonds: *.CG.mmol
. They will be used at the next stage during RDFs calculations.

Run: Usage: > cgtraj cgtraj.inp

3.2.2 cgtraj.inp: main input file

The file consists of two independent parts. The first part describes input atom-
istic trajectory, and the second part describes CG-bead mapping scheme.

Trajectory reading subroutine was inherited from tranal utility of MDynaMix,
and it has the same syntax. The first part of the input file is written in Fortran
NAMELIST format which looks like:

$TRAJ

parameter=value(s),

...

$END

9

http://www.fos.su.se/~sasha/mdynamix/
http://www.rcsb.org/pdb
(http://www.fos.su.se/~sasha/mdynamix/)
(http://www.fos.su.se/~sasha/mdynamix/)

“TRAJ” is the name of this NAMELIST section. The following parameters
shall be defined:

NFORM = <format>

where <format> is one of:

• MDYN - MDynaMix binary trajectory (default)

• XMOL - XMOL trajectory. It is implied, that the commentary (second)
line of each configuration is written in the format:

(char) <time> (char-s) BOX: <box_x> <box_y> <box_z>

where (char) is any character word, <time> is time in fs,

<box_x> <box_y> <box_z> (following after keyword BOX) are the
box sizes.

• PDBT - PDB trajectory as generated by “trajconv” utility of GRO-
MACS simulation package.

• DCDT - DCD trajectories generated by NAMD package

FNAME = <file_name>

set the base name of the trajectory files. The trajectory must be written
as a sequence of files <file_name>.001 , <file_name>.002 and so on, the
largest possible number being <file_name>.9999 .

PATHDB = <value>

Directory with molecular description files (.mmol). Default is the current
directory (.) .

NTYPES = <value>

Number of molecule types in the trajectory

NAMOL = <name1> [,<name2>,...]

NTYPES names of molecules. It is supposed that files <name1>.mmol,
<name2>.mmol,... describing the molecules are present in the directory
defined by PATHDB. Format of .mmol files is the same as for MDynaMix
program. For analyzing trajectories generated by other programs, .mmol
files are still used to provide information about atomic masses and charges.
It is however enough to have only the first section of .mmol files containing
description of atoms.

The program may work without .mmol files, if parameters NSPEC and
NSITS (see below) are given. In this case, the masses of all atoms are set
to 1 and the charges to 0, which will result in definition of CG sites as
geometric centers of the atomic groups, and zero charges of CG sites (the
later can be manually corrected at the next stage).

NSPEC = <n1>[,<n2>,...]

Number of molecules of each type (NTYPES numbers). This parameter is
not necessary in MDynaMix binary trajectories.

10

NSITS = <n1>[,<n2>,...]

Number of atoms on each molecule of each type (NTYPES numbers). This
parameter is not necessary if .mmol files for each molecular type are pro-
vided.

NFBEG = <value>

Number of the first trajectory file (integer between 0 and 9999)

NFEND = <value>

Number of the last trajectory file (integer between 0 and 9999)

IPRINT = <value>

Defines how much you see in the intermediate output. The final output
with analysis of results does not depend on it. Default value is 5.

BOXL = <x-box-size>

BOYL = <y-box-size>

BOZL = <z-box-size>

define the box size if it is not present in the trajectory (implies constant-
volume simulation) If information of box sizes is present in the trajectory,
box size parameters from the input file are ignored.

ISTEP = <value>

Specifies that only each ISTEP-th configuration from the trajectory is taken
for the analysis. Default is 1.

The second part of the main input file for cgtraj utility, which de-
scribes CG bead mapping scheme, has a hypertext-like format. The sec-
tion starts with keyword: BeadMapping and ends with EndBeadMapping.
Each coarse grain molecular type is described in a separate section, which
starts with tag CGMolecularType: <CGMolecularTypeName> and ends
with EndCGMolecularType. Inside each section, parental molecular type
name and CG beads definition should be given. The parent’s name is
defined by the tag

ParentType: <ParentMolecularTypeName>.

CG beads are defined in a line-per-bead way, where every line has the
following structure:
<Bead name>:<Number of atoms in the bead>:<list of atoms atom1,atom2,...>,

where list of atoms is a comma separated list of atom numbers accord-
ing to the mmol -file describing parental molecular type. A file named
<CGMolecularTypeName>.CG.mmol containing description of a coarse-grained
molecule will be created for every defined CG-molecular type.

The keywords/tags are not case sensitive, and spaces will be automatically
removed from the text.

3.2.3 Example: cgtraj.inp

This is an example of the input file, which reads a trajectory written in binary
MDynaMix format stored in 10 files: dmpc16.001, dmpc16.002,...,dmpc16.010.

11

The system presented in the trajectory consists of 16 DMPC lipid molecules dis-
solved in 1600 water molecules. The bead mapping scheme is shown on figure
2. The resulting CG DMPC have 10 beads. In the example below each water
molecule will be represented by a single bead of “CG water”. In order to com-
pletely remove the water and make implicit solvent model, the line beginning
with H2O: should be commented out.

&TRAJ

NFORM=’MDYN’,

FNAME=’./MDynamix/dmpc16’,

PATHDB=’./’,

NTYPES=2,

NAMOL=’dmpc_NM’,’H2O’,

NSPEC=16,1600,

NFBEG=1,

NFEND=10,

ISTEP=1,

IPRINT=6,

&END

BeadMapping

CGTrajectoryOutputFile:cgtraj.001

CGMolecularType:dmpc_NM.CG

ParentType: dmpc_NM

N:16:43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58

P:11:59,60,61,62,63,64,65,66,67,68,69

C1:9:1,2,3,4,5,73,74,75,76

C2:12:6,7,8,9,10,11,12,13,14,15,16,17

C3:12:18,19,20,21,22,23,24,25,26,27,28,29

C4:13:30,31,32,33,34,35,36,37,38,39,40,41,42

C5:8:70,71,72,77,78,79,80,81

C6:12:82,83,84,85,86,87,88,89,90,91,92,93

C7:12:94,95,96,97,98,99,100,101,102,103,104,105

C8:13:106,107,108,109,110,111,112,113,114,115,116,117,118

EndCGMolecularType

CGMolecularType:H2O.CG

parenttype:H2O

#comment the line below to exclude the water (make implicit solvent model)

H2O:3:1, 2, 3

endcgmoleculartype

EndBeadMapping

3.3 rdf.py : Reference Distribution Functions calculation

This section describes calculation of the structural distribution functions (DF),
which will be used as a reference for the effective potentials calculation during
the inverse process. Note, that after the previous stage (cgtraj), the gener-
ated CG trajectory does not have any information about chemical CG types

12

Figure 2: Simple mapping scheme of DMPC phospholipid, which consists of 118
atoms, into 10-beads CG model. The water is mapped into a single bead.

or bonding, and this information is provided at this stage when CG types and
their bonding is defined. Each distribution function will result in an individual
interaction potential, therefore definition of groups of beads, which belong to a

13

certain DF, is equivalent to definition of specific interactions in the system.

Input files:

*Molecular type description for each type present in the system: *.mmol .

*CG trajectory : *.xmol .

*Main input defining RDF calculation parameters, input trajectory, CG-atom/bead
types and the list of RDFs to calculate (and beads included in each spe-
cific RDF): rdf.inp
NB! The new input format was introduced in MagiC 2.0, however, the
old format of v.1.x is still supported and detected automatically.

Output files:

Reference distribution functions : *.rdf. See format details

Coarse-Grain topology *.mcm. See format details.

Run:

rdf.py -i rdf.inp

3.3.1 rdf.inp: main input file

RDF input file consists of several parts: RDF-calculation parameters (&Parameters),
definition of Coarse-Grain atom types (&CGTypes), and the list of RDFs to cal-
culate (&RDFsNB, &RDFsB, &RDFsA).

RDF calculation parameters: (&Parameters ... &EndParameters)
The section describes the input trajectory and defines resolution and cut-
off ranges for the reference distribution functions. Note that at this point
the trajectory should be already coarse-grained and solvent removed (if
the later supposed to be implicit).

The following parameters shall be specified. Old names of the parameters
used in MagiC v.1 are stated in parentheses:

OutputFile = <filename> The name of the output file containing a set of
calculated RDFs (FOUTRDF)

TrajFile = <filename> The name of the CG-trajectory file. (FNAME). The
file format will be detected from the extension, or can be stated explicitly
in the parameter NFORM

NFORM = <format> (Optional) Explicitly specified format of the CG-trajectory.
Can be XMOL, TRR or XTC. Detected automatically from the trajectory
file extension.

BeginFile=<value>, EndFile=<value> (Optional) If the trajectory is split
into a number of files emumetated by file name extentions (.001, .002,
.003, ...), these parameters specify a range of the files to read. (NFBEG,
NFEND)

Step = <value> (Optional) How often to read frames from the trajectory (IS-
TEP). Default: 1

14

NMType = <value> Number of molecular types present in the CG-trajectory.
(NTYPES)

NameMType = Type1, Type2, ... , Type(NMType) Names of molecular types
present in the system. Each type should have a molecular description file,
having the same name as the molecular type (NAMOL)

NMolMType = Num1, Num2, ... ,Num(NMType) Number of molecules of each
molecular type present in the system (NSPEC)

RMaxNB=<value> Cut-off distance for intermolecular / non-bonded RDFs (RD-
FCUT)

RMaxB=<value> Cut-off distance for intramolecular RDFs (RMAX)

ResolNB=<value> Resolution (Å) of the histogram for intermolecular RDF cal-
culation (DELTAR)

ResolB=<value> Resolution (Å) of the histogram for intramolecular RDF cal-
culation (DELTARI)

ResolA=<value> Resolution (degrees) of the histogram for intramolecular an-
gular distrubution functions calculation (DELTAPHI)

Box= <X> <Y> <Z> Size of the periodic box (Å) used as PBC. Optional. Used
only if the periodic cell size was not specified in the trajectory file.

Bead types: (&CGTypes, ... , &EndCGTypes)

Here bead types (CG-atom types) are introduced and beads belonging to
each type are specified. This is done by a list of lines having a format
<Name of CG-type>:<NameBead1 NameBead2 NameBead3>, one line per
each type, bead names are space separated. Note, that the order of bead
type lines will define indexes of the bead types set in the .mcm -files.

Non-Bonded RDFs (&RDFsNB, ... , &EndRDFsNB)

Here we define a list of reference distribution functions for non-bonded
interactions, which are radial distribution functions. For each function a
list of bead-pairs (CG atom pairs) involved in the specific interaction shall
be provided. It is possible to generate the list automatically between all
or some of pairs of bead types using the following commands:

add: all

This will generate automatically a list of RDFs which includes all possible
RDFs based on pair combinations of CG-atom types. For each pair of
CG-atom types a RDF will be determined, which includes all pairs of CG
atoms of the specified types, and effective potential for this pair of atom
types will be calculated on the next stage. With this option, all possible
NB-RDFs will be taken into account. This is the most common regime.

add: <CGType> -- <CGType>

Create a list of CG-atom pairs having the given CG-atom types, and
include it into calculation of RDFs. This will add a single RDF to the list.

add: <CGType1> -- <CGType2>: AName1 AName2, AName3 AName4

Explicitly add pairs of atoms AName1-AName2, AName3-AName4 to the
RDF for the given pair of CG-atom types. This is the most specific way
of setting the atom-pairs list for a given RDF.

15

del: <CGType> -- <CGType>

Remove a specific RDF (interaction) from the set of RDFs generated up
to this line.

del: <CGType> -- <CGType>: AName1 AName2, AName3 AName4

Exclude a specific pair of atoms from the RDF for given atom types.

RDFs for Pairwise Bonds (&RDFsB, ... , &EndRDFsB)

In this section reference distributions for pairwise bonds (e.g. bond length
distributions) will be specified. Note that this is important information
which determines bonding in the CG molecule, which has to be specified
explicitly.

Each bond should be specified by the following line: For every independent
bond type the molecular type it belongs to should be specified, with the
relative index of the bond and atom pairs involved in the bond.

add: <MolType>: <BondIndex>: <AName1> <AName2>, <AName3> <AName4>

where <MolType> is index of the molecular type, <BondIndex> is the index
of the bond in the given molecular type, and pairs <AName1> <AName2>, <AName3> <AName4>,...

determine CG atoms within the molecule connected by the given bond
type.

RDFs for Angle-bending bonds (&RDFsA, ... , &EndRDFsA)

In this section reference distributions for angle-bending bonds (e.g. bond
angle distribution) are determined. It can be done manually, similar to
specifying pairwise bonds, or deduced automatically by setting an A-bond
between every two interconnected pairwise bonds (excluding cases when
the end atoms of the angle are already connected by a bond). Note that
pairwise bonds shall be set in prior, i.e &RDFsA-section shall go after
&RDFsB-section. The following keywords can be used in this section:

add: all

Automatically deduce angle-bending bonds for all molecular types of the
system

add: MolType : all

Automatically deduce angle-bending bonds in the given molecular type

add: <MolType>: <BondIndex>: <AName1> <AName2> <AName3>, ..., ...

Explicitly add triplet (triplets) of atoms to the given angle-bending bond
of the given molecular type

del: MolType : all

Discard all angle-bending bonds in the given molecular type

del: MolType : <BondIndex>

Discard given A-bond

del: MolType : <BondIndex>: <AName1> <AName2> <AName3>, ...,

Remove given atoms from the defined previously A-bond

Note that every pair of atom involved in a bond (pairwise or angle-bending) is
automatically excluded from non-bonded RDF calculation and from non-bonded
interactions.

16

3.3.2 Example: rdf.inp

This is an example of rdf.inp file which defines reference distribution function
calculation for a interactions shown on figure 3.

&Parameters

TrajFile = cgtraj.dmpc16-400ns.xmol

NMType = 1

NameMType = dmpc_NM.CG.mmol

NMolMType = 16

OutputFile = dmpc16-100aa.rdf

RMaxNB = 20.

RMaxB =10.0

ResolNB =0.1

ResolB=0.02

ResolA=1.0

&ENDParameters

&CGTypes

N:N

P:P

CH:C2 C3 C4 C6 C7 C8

CO:C1 C5

&EndCGTypes

&RDFsNB

Add: all

Add: N--P

Add: N--P: N P

Add: N--CO: N C1, N C5

&EndRDFsNB

&RDFsB

add: dmpc_NM.CG: 1: N P

add: dmpc_NM.CG: 2: P C1, P C5

add: dmpc_NM.CG: 3: C2 C3, C3 C4, C6 C7, C7 C8

add: dmpc_NM.CG: 4: C1 C2, C5 C6

add: dmpc_NM.CG: 5: C1 C5

&EndRDFsB

&RDFsA

Add: all

#add: dmpc_NM.CG: All #Other way - generate all A-bonds for the molecule

#add: dmpc_NM.CG: 6: N P C1 #Example - create N-P-CO A-bond

&EndRDFsA

17

Figure 3: Example: 10-beads CG model of DMPC-lipid. Beads and bonds of
same color have same type; solid lines denote covalent bonds; dashed arrows
denote angle bending bonds.

3.4 MagiC core: Inverse Solver IMC/IB

3.4.1 General description

This is the main module of the whole software package. It performs Metropolis
Monte-Carlo sampling of the system described by some trial set of potentials,
then compares sampled distribution functions with the reference ones, and in-
troduces a correction to the set of potential. Then the new iteration starts, with
the corrected set of potentials. The process repeats the specified number of it-
erations. The process of inversion of RDFs can be regarded as completed when
agreement between sampled and reference distribution functions is reached.

The software automatically analyses the provided input files: molecular de-
scriptions, RDFs and/or potentials files and checks them for consistency. If
potentials for some interactions are not provided, they will be deduced from
the corresponding RDFs. By default a zero-potential (except the core with zero
reference RDF) is used as a starting potential for all NB-interactions, while po-
tential of mean force is used for the bonding interactions (which can be of type
B or A). It is also possible to use potential of mean force as a starting potential
for non-bonded interactions (not always suitable for multisite coarse-grained
molecules). A user can specify the kind of trial potentials for every interaction
in the .rdf file using keywords &InitZero, &InitPMF

If neither potentials nor RDFs are provided for certain non-bonded inter-
action, then such interaction will not be used in the MC simulation (which is
equivalent that corresponding interaction potential is set to zero). In case if
RDF-file is absent, no inverse procedure will be performed and the program will
just run a standard MC simulation with the supplied potential. In addition it
is also possible to fix some potentials and do not update them in the inverse
procedure using keyword &Fixed in the potential file.

18

3.4.2 Input/Output files

Input files:

Main input specifying parameters of the Monte-Carlo sampling, inverse solver
and input/output files: magic.inp

CG topology for every CG-molecular type: *.mcm

Reference distribution functions : *.rdf

Starting trial potentials *.pot . If not provided (or partially provided), the
missing trial potential will be deduced from the RDF-file as potential of
mean force or zero-potential, depending on user’s choice.

Initial geometry for MC-process in xmol-format (optional). In case of par-
allel execution, an individual file should be provided for each parallel pro-
cess:
name-of-the-system.p<process-number>.i<iteration-number>.start.xmol

Output files:

General output By default it is printed on the screen, but it is recommended
to redirect it to a file (see example below)

Log/journal for every parallel process . name-of-the-system.p<process-number>.
In serial run it is written to the general output.

Resulting effective potentials (starting potential for current iteration + cor-
rection): name-of-the-system.i<iteration-number>.pot

Monte-Carlo trajectory of each parallel process:
name-of-the-system.p<process-number>.xmol

The final snapshot of the system of each parallel process and iteration:
name-of-the-system.i<iteration-number>.p<process-number>.start.xmol This
file can be used as a starting configuration for a consequent MC run. In
case of a parallel MC run, a set of files is produced which are used as
starting configurations for each processors at the next iteration.

Execution:

serial execution : magic magic.inp

parallel execution : mpirun -np number of processes magic magic.inp >magic.out

3.4.3 magic.inp: main input file

In the MagiC-core input file (version ¿ 2.0) parameters are specified as a set of
keywords
ParameterName = Value

and have self-explanatory names (old names from version 1.x are also sup-
ported). Warnings or error messages are issued for missing compulsory pa-
rameters or inconsistent values. Lists of variables (vectors) should be comma
separated (i.e. BOX = X, Y, Z). Comment lines denoted by or # are supported
as well as empty lines. For logical parameters most possible acronyms, such as
F, .F., False, FALSE are accepted.

For convenience the parameters are divided into five groups. There is how-
ever no need to follow this order, the program accept parameters in any order

19

they follow. The old names of parameters (which is still possible to use) are
given in the brackets.

The following parameters can be defined. In the second brackets an alter-
native keyword corresponding to v. 1.x is given. Keywords marked with * are
mandatory.

System parameters:

NMType* [NTYP] Number of different molecule types (species) present in
the system.

NameMType* [NAMOL] Names of the molecule types present in the system,
separated by comma. Every molecule type should have a respective de-
scription file(.mcm). For example NameMolType = H2O, DMPC defines 2
names: H2O-for the first molecule type, and DMPC for the second one. The
description files should be named H2O.mcm and DMPC.mcm.

NMolMType* [NSPEC] Number of molecules of each type, written as a
comma-separated list, e.g. NMolMType=392,3 defines system, which con-
sists of 392 molecules of the first type, and 3 molecules of the second
type.

LMoveMType [LMOVE] Which molecular types are allowed to move in the
Monte Carlo simulation. List of comma-separated logical values. De-
fault LMOVE = True,.., True , i.e. all molecules are allowed to move.
Frozen molecules coordinates has to be specified in a *.xmol file given in
InputFrozenCoords parameter.

Epsilon [EPS] Dielectric permittivity constant defining electrostatic interac-
tions in the system. Default: 1.0

TEMP* Temperature of the system, K

Box* [BOXL,BOYL,BOZL] Periodic cell dimensions in Å, separated by comma.
The software uses rectangular periodic boundary conditions.

Monte Carlo parameters:

MCSteps* [NMKS] Total number of Monte Carlo steps to be performed on
every iteration (including equilibration).

MCStepsEquil* [NMKS0] Number of Monte Carlo steps to be performed for
the equilibration.

MCStepAtom* [DR] Maximum displacement in a Monte Carlo single atom
displacement step, Å. Default: 1.0

MCStepTransMol [MCTRANSSTEP] Maximum displacement in a MC trans-
lation of a whole molecule, Å. Default: 0.0

MCStepRotMol [MCROTSTEP] Maximum degree of MC rotation of the
whole molecule, deg. Default 0.0

iMCStepTransMol [ITRANS] How often (in terms of MC steps) to perform
random translation of a randomly chosen molecule. Default: 0, i.e. never

iMCStepRotMol [IROT] How often (in terms of MC step) to perform random
rotation of a randomly chosen molecule. Default: 0, i.e. never

20

iCalcEnergy* [IOUT] How often to recalculate the total energy and write
energies and pressure to the log-file. If the difference in total energy before
and after the recalculation is larger than 0.01kBT , a warning message will
be given. This procedure is computationaly expensive (order N2), and
should not be performed too often.

RCutEl* [RECUT] Real space cutoff for electrostatic energy in real-space part
of the Ewald sum. It is recommended to set it equal to cutoff radius of
RDFs and short-range interactions, but in some cases other choices can
be reasonable.

AF, FQ Ewald summation parameters: The electrostatic energy in Ewald
method can be expressed as

Uel =
1

2V

k2<k2

cut
∑

k 6=0

4π

k2
|ρ(k)|2 exp (− k2

4α2
)− α√

π

N
∑

i=1

q2i+
1

2

N
∑

i6=j
rij<rcut

qiqj erfc (αrij)

rij

(1)
where, α = AF

rcut
, and k2cut = 4α2 FQ. In other words, the precision or

the first sum is defined by exp(FQ) , while accuracy of the third sum is
defined by erfc(AF). Default: AF=3., FQ=9.0

RandomSeed [NRS] Initial seed for the random number generator.

KeepStructure [LCRDPass] Define if the final structure of the previous in-
verse iteration shall be used as starting for the consequent iteration. Oth-
erwise the starting configuration will be generated randomly. Default:
False

Inverse procedure parameters:

UseIMC [LIMC] Inverse solver selection. If true, the Inverse Monte Carlo
method is used, otherwise iterative Boltzmann inversion is used. Default:
True (IMC)

NIter* [IREPT] Number of inverse iterations to perform. Default: 1

RegP [REGP] Regularization parameter for potential correction. This param-
eter defines the relative weight of correction, and has a value between 0
and 1. In case of instability (each next iteration returns larger deviation
from reference RDF), value of REGP should be decreased. It is also ad-
visable if correction to potential at each iteration exceeds treshold value
(default 2 kBT). REGP can be again increased closer to 1 if the iteration
process is stable and correction to the potential at each iteration is small.
Default: 1.0

iAverage* [IAV] How often to compute averages over the system. Since com-
putation of the averages (RDFs and cross-correlations) involves calculation
of distances between all pairs of atom, this procedure is rather expensive,
and should not be performed too often. The recommended value is of the
order of number of CG atoms in the system The averaging starts after the
equilibration, i.e. when first MCStepsEquil steps have passed.

MaxPotCor [DPOTM] Maximal change of potential value at every point dur-
ing correction procedure, given in kBT units. Default: 2.0

21

MaxRelDif [RTM] Parameter limiting maximum relative difference between
reference and resulting averages. Default: 10.0

iPotCorrCheck How often to perform potential correction check. The pro-
gram gathers accumulated statistics from all the processes, and then cal-
culates sampled distribution functions and potential corrections. How-
ever, this corrections are not applied to the actual interaction potential,
but just printed to the log file. This allows user to analyze how well both
distribution functions and potential corrections are converged after given
number of MC steps of an inverse iteration. The checks are performed
after equilibration. Default 0, i.e. no check at all.

ProhibPotLevel [POTCUT] Prohibiting potential level. Relatively high value
of potential in kJ/mol to define a core region of the potentials at distances
where the corresponding RDFs are zero, to avoid MC steps leading to such
distances. Default: 1000.

Input-Output parameters:

Output* [BASEOUTFILENAME] Prefix name of the system (filename tem-
plate) to use for writing output files. All names of output files will begin
with the given prefix.

VerboseLevel [IPRINT] Verbosity level of the log-file. 1-minimum level, 10 -
maximum level. Default: 5.

WriteTraj [ITR] How often (in terms of MC steps) to write current geometry
to the trajectory file. Default: 0 - do not write it at all.

InputRDF [FILRDF] Input file with reference distribution functions. Re-
quired for inverse procedure, otherwise only a direct MC simulation will
be performed

InputPotential [FILPOT] Input file with a set of trial potentials.

InputStartCoords [FSTART] Name of the input file (or prefix for a set of
files) with starting coordinates, excluding ’p001.start.xmol’ suffix. If not
provided, the starting geometry will be randomly generated.

InputFrozenCoords [FCRD] Name of a single *.xmol file with starting co-
ordinates of all frozen molecules in the system. It will be used to define
starting location of the frozen species for every inverse iteration. The
file is almost the same as start.xmol, but it does not contains moving
molecules/atoms.

DumpLastConf [LXMOL] If true, program dumps the last configuration of
MC process in file (or set of files) with ”.start.xmol” extention. It is done
after every inverse iteration on every parallel process. Default: False - do
not dump. In case of parallel execution, output filenames have extentions
<Output>.i<iteration>.p<process>.start.xmol

3.4.4 Example: magic.inp

Here is an example of the input file, representing the system of 2 molecule
types (MT1 and MT2), having 10 molecules of each. The program shall read
RDF from file MT1MT2.rdf and the IMC will be used for inversion, making

22

10 iterations in total. As the potentials are not provided, the trial potentials
will be deduced from RDFs according to the settings in the RDF file 5 millions
MC steps are to be made at every inverse iteration, and half of them are for
equilibration.

NMType = 2

NameMType = MT1, MT2

NMolMType = 10, 10

LMoveMType = TRUE, T

Box = 15.0, 15.0, 15.0

Epsilon = 1.0

TEMP=303.

MCSteps = 5000000,

MCStepsEquil = 2500000,

MCStepAtom = 0.2

MCStepTransMol = 1.0

MCStepRotMol = 0.2

iMCStepTransMol = 50

iMCStepRotMol = 50

iCalcEnergy = 100

RCutEl=0.7

AF = 2.6

FQ = 8.0

ProhibPotLevel=1000.0

RandomSeed=51

UseIMC = True

NPointsNB = 70

NIter=10

IAverage=50

REGP = 0.1,

MaxPotCor=2.0

KeepStructure=False

MaxRelDif=10.0

iPotCorCheck = 250000

VerboseLevel=5

InputRDF= MT1MT2.rdf

Output = 01.111.MT1MT2

DumpLastConf = .false.

WriteTraj = 100000

3.5 MagicTools: Juggle with MagiC’s data

This part of the package is an python-based library (set of procedures), and it
is run in a python interpreter. We recommend to use ipython as an interpreter,
but the standard python should also work. Once you have started ipython, you
need to import the module. To do this type: import MagicTools, if no error

23

message appeared, the importing was done correctly.
Analysis usually include the following phases: Reading the data from output

files; Plotting the data; Numerical analysis/evaluation of the data; Export of
the data.
Below we will discuss how these actions can be taken by MagicTools.

3.5.1 Reading the data

MagicTools can read data from several file types, used in MagiC: RDF and po-
tential files *.rdf, *.pot and the MagiC core log file magic.out. This is done
by procedures: ReadRDF, ReadPot and ReadMagiC, respectively.

Example:

import MagicTools

RDFs_ref=MagicTools.ReadRDF(’MT1MT2.rdf’)

Pots=MagicTools.ReadPot(’01.MT1MT2.i010.pot’)

RDFs_smpl=MagicTools.ReadMagiC(’01.magic.out’, iters=(1,2,10))

The first line imports the library, while the rest lines are showing how to call
the reading procedures. The procedures put the data into specified variables:
RDFs_ref, Pots, RDFs_smpl. The first two variables can be considered as a
set of RDFs (or Potentials), having all non-bonded, pairwise and angle-bending
distributions (potentials) provided in the file (and the occasional included files).
The third variable, resulting from reading MagiC.core output is a list of RDFs,
where every element of the list is a set of RDFs sampled while given iteration,
as specified in parameter iters. The ReadMagiC, is not limited to reading
just RDFs, but it can also extract potentials, corrected potentials, corrections
applied at an iteration, reference RDFs. Check the procedure references for
more details.

NB! Technically speaking, RDFs ref and Pots are objects of class DFset
(RDFs smpl is a list of DFset objects), which contains basic properties and
methods, allowing to deal with such set of function in somewhat simplified
manner. For more details check the section referring to DFset class.

In addition to reading from the MagiC data files, procedures LoadDFs can
be used to read intermediate DFs and lists of DFs, which were dumped on disk
by DumpDFs.

3.5.2 Plotting and Inspecting the data

After the data are imported, they can be visualized via plotting. There are
two possible ways one can plot datasets (RDFs, potentials, corrections, etc.) in
MagicTools. The first one is to use general plotting function PlotAllDFs. This
is especially handy when few DFs sets shall be plotted simultaneously, such as
if one needs to compare RDFs sampled on different iterations.

Another way is to use Plot method of either set of DFs or of particular
RDF/potential therein. This is convenient when one needs to plot one particular
set of functions or even individual function.

Examples:

• Plot the set of RDFs, with one curve per plot:
MagicTools.PlotAllDFs(RDFs_ref)

24

• Plot a list of sets of RDFs sampled at different iterations:
MagicTools.PlotAllDFs(RDFs_smpl)

in this case all the RDFs will be automatically grouped by the interaction
they refers to.

• Plot together a list of DF-sets (e.g. sampled RDFs) and an additional
DF-set (e.g. reference RDFs)
MagicTools.PlotAllDFs(RDFs_smpl+[RDFs_ref])

• Alternative way to plot a set of RDFs (e.g. reference RDFs), with one
curve per plot: RDFs_ref.Plot()

Note the syntax: You state the actual name of the variable containing the
set of DFs imported beforehand (see Reading data section above), and
then use an embedded Plot() method of this variable.

• Plot a single function (RDF or potential) form the set:
RDFs_ref[0].Plot()

Note the syntax: As above, first you address the variable with the DFs-
set (RDFs ref), and then you specify the index[0] (counted from 0) of the
function you would like to plot. Then you use an embedded Plot() method
of this function.

In addition to plotting of already imported data, one can make a quick
inspection of the MagiC core log-file using two procedures:

Procedure Deviation plots total deviation between reference and computed
on different iterations distribution functions. Procedure AnalyzeIMCOuput plots
reference and resulting DFs obtained in inverse procedure. They both require
magic’s output file as input.

Procedure PlotAllDFs takes a list of distribution functions (RDF, poten-
tials) and plots them in relevant groups. This is the easiest way to plot and
compare few sets of DFs, for example from different iterations of IMC.

3.5.3 Numerical analysis of the potentials

MagicTools has several procedures performing simple analysis of the effective
potentials resulted from MagiC core:
TotalPots returns a set of total potentials,where the electrostatic interactions
are included into the short-range intermolecular potentials.
GetOptEpsilon calculates the optimal value of dielectric permittivity which pro-
vides fastest decay of short-range intermolecular potentials at their tail.
PotsEpsCorrection creates a new set of potentials, where all non-bonded short
range potentials are corrected to correspond to the new value of dielectric per-
mittivity.
PotsPressCorr creates a new set of potentials, where all non-bonded short
range potentials get added a decaying linear term, which suppose to improve
total pressure in the target system.

3.5.4 Saving the data

Two operations are available: DumpDFs- dumps a list of DFs to a binary dump
file, which can be read later by LoadDFs; SaveDFsAsText saves a distribution

25

function from a given list to a separate text-file;

3.5.5 Exporting potentials: GROMACS

Preparing a set of files for MD simulation with GROMACS is quite a challenge
even for an experienced user. MagicTools provides few exporting procedures
which hopefully make your life a bit easier. GROMACS requires provide five
files: starting geometry (.gro, .pdb) and index file (.ndx), topology file (.top),
simulation parameters (.mdp) and tabulated potentials (.xvg)

xmol2gro - converts .xmol structure file into GROMACS supported .gro

format. Another workaround is to use VMD for opening .xmol and saving it
in .pdb format. Once the starting structure is prepared, the index file can be
generated by make_ndx tool, which is a part of GROMACS. Note that you shall
create an individual group in the index file for every bead/atom type present in
the system.
GromacsTopology - a simple tool to create a topology file, having the same in-
teractions as in MagiC. Note that you shall manually state the actual number
of molecules to be present in the system in the generated .top file.
PotsExport2Gromacs exports the list of potentials to a GROMACS’s .xvg tabu-
lated potential format, and also generates strings energygrps and energygrp_table,
which shall be stated in .mdp file.

We highly recommend to check HowTo Tabulated potentials and respective
part of the MagiC tutorial for getting some practical experience of the potential
exporting procedure.

3.6 MagicTools procedures reference:

Reading: ReadRDF, ReadPot, ReadMagiC, LoadDFs
Plotting and inspecting: PlotAllDFs, DFset.Plot, Deviation, AnalyzeIMCOuput
Analyzing: TotalPots, PotsEpsCorrection, GetOptEpsilon, PotsPressCorr
Saving/Writing: SaveDFsAsText, DumpDFs, SplitDFset
Exporting2GROMACS: PotsExport2Gromacs, GromacsTopology, xmol2gro
Converting: tpr2mmol, xmol2gro, gro2xmol, Convert2NewFile pot, Convert2NewFile rdf

3.6.1 ReadRDF(ifile)

Read (import) reference distribution functions (RDFs) from a .rdf file ifile*
(in MagiC 2.0 format) into a variable of the class DFset representing a single
set of functions (which can be RDFs, potentials, potential corrections).

Example: RDFs_ref=MagicTools.ReadRDF(’MT1MT2.rdf’)

3.6.2 ReadPot(ifile, Ucut=1000)

Read (import) tabulated potentials from a .pot file ifile* into a variable of the
class DFset. The optional parameter Ucut is a height of the hard repulsive core
at r=0 in kJ/mol.

Examples:
Pots=MagicTools.ReadPot(’01.MT1MT2.i010.pot’)

Pots=MagicTools.ReadPot(’01.MT1MT2.i010.pot’, Ucut=5000.0)

26

http://manual.gromacs.org/current/online/gro.html
http://www.gromacs.org/Documentation/File_Formats/Index_File
http://www.gromacs.org/Documentation/File_Formats/Topology_File
http://www.gromacs.org/Documentation/File_Formats/.mdp_File
http://www.gromacs.org/Documentation/How-tos/Tabulated_Potentials

3.6.3 ReadMagiC(ifile, iters=None, DFType=’RDF’, PairNames-
List=None, mcmfile=None)

Parse the file ifile* produced by MagiC software and return a list of DFset (few
sets of distribution functions: RDF/potential etc.): DFs[iteration][pair]

Optional parameters:

DFType - defines what shall be extracted from the file: ’RDF’ - distribution
functions sampled in MC calculations (one set for each iteration); ’RD-
Fref’ - reference RDFs(ADFs); ’Pot’ - Potentials used for MC sampling in
the iterations; ’PotNew’ - resulting potentials generated in the iteration;
’PotCorr’ - Potential correction applied in the iteration.

iters - tuple/list of iterations to extract from the file. If nothing mentioned all
iterations will be extracted. Example: iters=(1,2,3) or iters=(1)

mcmfile - list of the mcm files (or a single file) used in the inverse MC calcu-
lation. If not provided, it will be generated automatically.

PairNamesList - List of pairs of atomic names to search in the output file.
It consists of three sublists: first of them refer to non-bonded pair inter-
actions, the second refers to bonded pair interactions, and the third one
refers to bending angle (1-3) bond interactions. If no list provided, it will
be generated automatically from the specified mcmfiles.

Examples:
1. Fully automatic: Read RDFs for all pairs and bonds and from all iterations.
Autodetect mcmfiles.
RDFs=MagicTools.ReadMagiC(’03.magic.out’)

2. Reading potentials on iteration 1,2,3,
Pot=MagicTools.ReadMagiC(’03.magic.out’, iters=(1,2,3), DFType=’Pot’,

PairNamesList=[[’N-N’,’N-P’], [’N-P’,’P-C1’], [’N-C1-P’]])

3. Reading corrections to the potentials applied on the iteration 5, and specify
the mcmfile
PotCorr=MagicTools.ReadMagiC(’03.magic.out’, iters=(5), DFType=’PotCorr’,

mcmfile=’dmpc_NM.CG.mcm’)

3.6.4 LoadDFs(filename)

Loads a set of DFs from a file previously dumped with DumpDFs.

filename* - name of the file to load (mandatory argument)

Example: Pots=MagicTools.LoadDFs(’pots.dmp’)

3.6.5 PlotAllDFs(listDFset, hardcopy=False, title=”, linetype=”,
coinciding=False, nolegendintra=False, figsize=(20,14), dpi=80)

Plots a set (or list of such sets) of functions (RDFs, potentials, corrections).
Functions can be plotted all together on a same plot, or one per plot, or grouped
by the type of interaction they are representing.

listDFset* - list of sets of distribution functions, e.g. it is a list which keeps a
few DFset objects inside (mandatory argument). Can be also a single set

27

of functions

hardcopy - If the plots should be saved as *.eps files (optional argument).
Default value - False, no eps copies are made.

title - Prefix used in a title of each plot (optional argument).

linetype - String defining a type and color of lines according to matplotlib syn-
tax (optional argument). See more about syntax here: matplotlib tutorial

coinciding - Plot only coinciding functions (i.e. related to the same pair of
bead types, or related to the same bond within the same molecule). Useful
when one need to compare similar functions obtained from different (but
close to each other) systems.

nolegendintra - If a legend on intramolecular plots should be omitted (op-
tional argument). Default:False - show the legend everywhere. This op-
tion might be useful, when legend overlaps with curves on plot, usually it
can happen when plotting intramolecular DF/potentials.

figsize - Size of the plot in inches (x,y) (optional argument). Default size is
(20,14).s

dpi - Resolution of the plot in dpi (optional argument). Default value: 80 dpi.

Examples:
RDFs=MagicTools.ReadMagiC(’03.magic.out’)

RDFref=MagicTools.ReadMagiC(’03.magic.out’,DFType=’RDFref’)

Import RDFs obtained on every iteration of IMC to a list of RDFs (list of DFset
objects) and also import reference RDFs
MagicTools.PlotAllDFs(RDFs) - Plot RDFs from the list at the same plot
grouped by origin (pair of beads involved in function).
MagicTools.PlotAllDFs([RDFref]+[RDFs[0]],hardcopy=True,

title=’RDF convergence in IMC’,linetype=’.’) Plot RDFs calculated in
the first iteration of IMC at the same plot with reference RDFs, save copies to
eps-files. Plots will be drawn with dots instead of lines, and a title will be added
to each plot.
MagicTools.PlotAllDFs(RDFref) - Plot every function for RDFref on a sepa-
rate figure.

3.6.6 DFset.Plot(AtOnce=False, hardcopy=False, title=”, linetype=”,
nolegendintra=False, figsize=(20,14), dpi=80):

Plots all functions stated in the set DFset either on one plot or on few individual
plots.

AtOnce - if true, all functions are plotted on the same plot (separated by type:
i.g. 3 plots are produced: NB, B and A), otherwise each function is plotted
separately

hardcopy - If the plots should be saved as *.eps files (optional argument).
Default value - False, no eps copies are made.

title - Prefix used in a title of each plot (optional argument).

linetype - String defining a type and color of lines according to matplotlib syn-
tax (optional argument). See more about syntax here: matplotlib tutorial

28

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot

nolegendintra - If a legend on intramolecular plots should be omitted (op-
tional argument). Default:False - show the legend everywhere. This op-
tion might be useful, when legend overlaps with curves on plot, usually it
can happen when plotting intramolecular DF/potentials.

figsize - Size of the plot in inches (x,y) (optional argument). Default size is
(20,14).

dpi - Resolution of the plot in dpi (optional argument). Default value: 80 dpi.

Examples:
RDFref.Plot() Plot all functions imported in the variable RDFref (i.e. reference
distribution functions), each function on an individual plot.
RDFref.Plot(AtOnce=True) Plot all functions on the same plot. One plot per
function type will be produced: Non Bonded, Bonded and Angle bending.

3.6.7 Deviation(filename,hardcopy=False,returnarrays=False, test-
points=False)

Analyze the output file filename* (or list of files) produced by the MagiC core
and plot deviation between the set of reference distribution functions and sam-
pled distribution function obtained on every iteration of the inverse procedure.
Two deviations are calculated:
∆S ∼ [

∑rj=rmax

rj=0 (Siter(rj)− Sref (rj))
2]0.5 and

∆RDF ∼ [
∑rj=rmax

rj=0 (giter(rj)− gref (rj))
2]0.5

If an intermediate convergence test has been performed during inverse proce-
dure, results of the test are also plotted.

filename* - name of the magic output file or list of such names (mandatory
argument).

hardcopy - if the plot should be saved to a .eps file (optional argument). De-
fault - no.

testpoints - if the points sampled in intermediate convergence tests shall be
also plotted. Default - no.

returnarrays - if true, the procedure returns numpy arrays with iteration num-
ber and deviation values.

Examples:
MagicTools.Deviation(’01.magic.out’)

MagicTools.Deviation([’01.magic.out’,’02.magic.out’],hardcopy=True)

3.6.8 AnalyzeIMCOuput(filename, DFType=’RDF’, iters=None,
hardcopy=True, mcmfile=None, PairNamesList=None)

Quick tool to parse the output file produced by MagiC core and plot the sampled
DFs of interest (and the reference DFs). The parameters have exactly the same
meaning as in ReadMagiC
Example:
MagicTools.AnalyzeIMCOuput(’01.magic.out’)

29

3.6.9 TotalPots(pots, eps, mcmfile=None)

Creates a set of total potentials by adding electrostatic interactions to a short-
range potential.

Utot = Usr +
qi ∗ qj
4πǫǫ0rij

(2)

Electrostatic part is only applied to the intermolecular potentials, while bond
potentials (both pairwise and angular) will be kept the same.

pots* - list of potentials (mandatory argument)

eps* - dielectric permittivity ǫ of implicit solvent used in inverse Monte-Carlo
simulation (mandatory argument).

mcmfile - molecular description file (or list of files) providing charges for bead/CG-
atom types. Required if the potential was read from .pot file rather than
from MagiC core log file.

Example:
Pots=MagicTools.ReadPot(’03.magic.i010.pot’) - import potentials.
TotalPots=MagicTools.TotalPots(Pots, eps=70.0, mcmfile=’dmpc_NM.CG.mcm’))

Create total potentials and store it in the variable TotalPots.

3.6.10 GetOptEpsilon(pots, eps old, r1, eps min=0, eps max=0, npoints=100,
mcmfile=None)

Calculates optimal value of the dielectric permittivity which provides fastest
decay of short-range intermolecular potential tales according to the procedure
described in: A.A.Mirzoev and A.P.Lyubatsev, Phys.Chem.Chem.Phys., 13,
5722-5727 (2011) DOI: 10.1039/C0CP02397C.

Briefly, the procedure to obtain values of the dielectric permittivity providing
fastest decay of short-range potentials set with distance consists in the following.
First, we introduce a numerical criteria of a short range potential deviation from
zero at large distances:

W (U ij
sr(r)) =

r2
∫

r1

∣

∣r2(U ij
sr(r))

∣

∣dr (3)

where r2 factor implies a higher weight of larger distances, r1 and r2 are the
lower and upper boundaries of the range of distances defining the tail (the r2
value is taken as the cut-off of RDFs and tabulated effective potentials). The
absolute value in the equation is used in order to deal with possible oscillations
of the short range part of the potential. From eq. 2, one can write for the
short-range part of the potential:

W (U ij
sr(r)) =

r2
∫

r1

∣

∣r2(U ij
tot(r)−

qiqj
4πε0εr

)
∣

∣dr (4)

Assume we define the long-range Coulombic potential using another value of
permittivity ε⋆. This, according to 2, introduces a new short-range potential
as:

U⋆ ij
sr = U ij

sr(r) +
qiqj
4πε0r

(
1

ε
− 1

ε⋆
) (5)

30

Now we shell find the optimal ε⋆, which produces the fastest decay of all three
short range potentials according to criteria defined by eq. 3. We minimize the
sum:

W (system) =
∑

i,j

W (U⋆ ij
sr (r)) =

∑

i,j

[U ij
sr(r) +

qiqj
4πε0r

(
1

ε
− 1

ε⋆
)] (6)

by varying ε⋆. The optimal value of ε⋆ can be considered as effective dielectric
permittivity corresponding to the given thermodynamic conditions (tempera-
ture, concentration).

pots* - set of potentials to analyze (mandatory argument) NB! The dielectric
permittivity value calculation only takes intermolecular potentials into
account skipping bonding potentials.

eps old* - dielectric permittivity used in inverse MC calculation (mandatory
argument)

r1* - distance where tail range begins, Å(mandatory argument)

eps min, eps max - range of values for the search of ǫopt (optional argument).
By default eps min=0, eps max=2*eps old

npoints - number of points in a mesh to be used for the search, e.g. accuracy
of the search is equal to ǫmax−ǫmin

npoints

mcmfile - molecular description file (or list of files) providing charges for bead/CG-
atom types. Required if the potential was read from .pot file rather than
from MagiC core log file.

Example:
eps_opt=MagicTools.GetOptEpsilon(Pots, 70.0, 15, eps_min=50, eps_max=100,

mcmfile=’dmpc_NM.CG.mcm’) - get optimal epsilon value.

3.6.11 PotsEpsCorrection(pots, eps old, eps new, mcmfile=None)

Creates a new set of potentials, where intermolecular potentials are adjusted to
a changed value of the dielectric permittivity according to eq.5. Intramolecular
(bond) potentials are kept untouched.

pots* - set of potentials to analyze (mandatory argument) NB! The correction
only affects intermolecular potentials.

eps old* - dielectric permittivity used in inverse MC calculation (mandatory
argument)

eps new* - new value of dielectric permittivity.

mcmfile - molecular description file (or list of files) providing charges for bead/CG-
atom types. Required if the potential was read from .pot file rather than
from MagiC core log file.

Example: newpots=MagicTools.PotsEpsCorrection(Pots,eps_old=70,eps_new=100)

31

3.6.12 PotsPressCorr(pots,U corr0)

Creates a new set of short-range potentials by adding a decaying linear term to
each intermolecular potential in the set. Such a correction suppose to improve
reproduction of a correct pressure in the large scale CG simulation. Intramolec-
ular potentials are kept untouched. Correction term is linear and has value of
Ucorr0 at point r=0, and value of 0 at r = rmax, e.g. Ucorr(r) = Ucorr0 ·(1− r

rmax
)

pots* - set of potentials to analyze (mandatory argument) NB! The correction
only affects intermolecular potentials.

U corr0* - Magnitude of the correction, kJ/mol (mandatory argument)

Example: newpots=MagicTools.PotsPressCorr(Pots,0.5)

3.6.13 SaveDFsAsText(DFs)

Save every function from a given set of functions (or a list of such sets) into a
separate text-file. Each function is saved in a tabulated format: First column
- distances in Å, second column - values. The text file has the same name
as the according function. The files are ready to be plotted by gnuplot, e.g.
gnuplot> plot ’./NB.RDF.NB.N-N.i1.dat’ w lines

DFs* - set (list of sets) of the functions to save (mandatory argument)

Example: MagicTools.SaveDFsAsText(Pots)

3.6.14 DumpDFs(DFs,filename)

Dumps a given set of DFs into a file. The file can be read using LoadDFs.

DFs* - set of distribution functions to dump (mandatory argument)

filename* - name of the dump-file (mandatory argument)

Example: MagicTools.DumpDFs(Pots,’pots.dmp’)

3.6.15 SplitDFset(ifile, ofile, Split=True)

Splits the set of RDFs or potentials given in the file ifile into a main header file
and an additional set of included files.

DFs* - set of distribution functions to dump (mandatory argument)

filename* - name of the dump-file (mandatory argument)

Split - logical list, stating which DFs within the file shall be moved to included
file, while other will remain in the main header file.

Examples:
MagicTools.SplitDFset(’03.magic.i010.pot’,’magic.pot’)

MagicTools.SplitDFset(’03.magic.i010.pot’,’magic.pot’, Split=[True,False])

MagicTools.SplitDFset(’03.magic.i010.pot’,’magic.pot’,

Split=[i>10 for i in xrange(0,20)])

32

3.6.16 GromacsTopology(mcmfile, topfile=’topol.top’)

Creates a GROMACS topology file *.top from a given of mcm-file or a list
of mcm-files. Number of molecules in the resulting system should be stated
manually once the top-file is created.

mcmfile* - Name of the mcm-file or a list of such files (mandatory argument).

topfile - Name of the output GROMACS topology file. Default: topol.top

Examples:
MagicTools.GromacsTopology(’dmpc_NM.CG.mcm’) - system of single molec-
ular type
MagicTools.GromacsTopology([’dmpc.mcm’,’dopc.mcm’],’dmpc_dopc.top’)

- system having two different molecular types

3.6.17 PotsExport2Gromacs

PotsExport2Gromacs(pots, npoints=2500, Umax=6000,
Rmaxtable=2.5, PHImaxtable=180, filename=”, noplot=False, hard-
copy=True, figsize=(14, 7.5), dpi=120, sigma=0.5,
zeroforce=True, interpol=True, ofilename=”)

This procedure exports a set of potentials into GROMACS’s .xvg format.
Such an export is a rather advanced and multistage process, here a detailed
description of the procedure is given.

The first thing to take into account is that Gromacs requires typically a
higher resolution of the grid for tabulated potentials than typical resolution
of the RDF inversion which is used in MagiC. Furthermore, the potential and
force should be smooth functions of the distance, and do not have discontinuities
at the end of the intervals where they are determined. Thus the original range
where the potentials and RDFs were determined during the inversion procedure,
should be extended in a smooth fashion to nearby range of distances.

Thus in general the question is the following: we start with a tabulated
potential which is defined on a r-grid [rmin : rmax] with a given density (figure
4-A, red circles); and as the result we need to obtain a tabulated potential, which
is defined on a r-grid [0 : rvdw + rtable−extension] with larger density (figure 4-D,
cyan line).

In order to do that, we need to introduce left-side and right-side extensions
of the potential which should be smoothly connected to the original potential
(figure 4-B, blue circles). The left side extension should represent strongly
repulsive core so it is approximated by

U left(r) = ar2 + br + Umax (7)

and coefficients a and b are chosen to provide continuity of d
dr
U(r) at r =

rmin. For the right side extension we should take into account the origin of
the potential: Short-range intermolecular potentials should decay to zero when
r > rmax:

Uright
short range(r) = U(rmax) · exp[−10

(r − rmax)

rvdw+table−extension − rmax

] (8)

33

http://www.gromacs.org/Documentation/File_Formats/Topology_File
http://manual.gromacs.org/current/online/top.html

Here 10 is just some pre-defined coefficient, rvdw+table−extension is a range of
the table required by GROMACS. Angle bending potentials should also decay
to zero at φ = 180◦:

Uright
angle(φ) = U(φmax) · exp[−100

(φ− φmax)

180◦ − φmax

] (9)

In contrast, pairwise bond potentials should have an attractive wall at the right
side, which is approximated by harmonic wall in the same way as the repulsive
wall at the left side:

Uright
pair bond(r) = ar2 + br + Umax (10)

coefficients a and b are chosen to provide continuity of d
dr
U(r) at r = rmax.

Once the extension has been made, we can interpolate all the points to a
denser grid (figure 4-C). Number of nodes in the grid is defined by npoints. If
interpol=False, a grid of original density is used. The interpolation is made
by Gaussian smoothing, e.g. every point of the resulting potential is obtained
as

Unew(r) =
1

Z(r)

rmax
∑

ri=rmin

Uorig(ri) · exp
−(r − ri)

2

2σ2
(11)

Z(r) =

rmax
∑

ri=rmin

exp
−(r − ri)

2

2σ2
(12)

where sigma defines how broad is the averaging. By default σ = 0.5∆ri
Once the interpolation is done, each resulting potential and force based

on it are written to a xvg-file. The xvg-file is named by the name and type
of the corresponding original potential. Forces can be suppressed by setting
noforce=True, then zeros will be written to the file. In such case GROMACS
should automatically calculate forces from a given potential.

In order to control the results, each original potential, the extrapolated part
and the interpolated potential are plotted together. The plotting is controlled
by parameters noplot, hardcopy, figsize, dpi, which are explained below.

pots* - set of potentials to export into GROMACS .xvg format (mandatory
argument)

ofilename - Prefix used for naming of the output .xvg files (optional argument).

zeroforce - do not write forces into .xvg-file, but write zeros instead (optional
argument). In such case GROMACS should automatically calculate forces
from potentials. Default: False - forces are to be written. NB: Even if
zeroforce=True force values are plotted.

npoints - number of points in the resulting table in .xvg file (optional argu-
ment). Default value - 2500 points.

Umax - height of potential wall at r=0 in case of non-bonding potential and
at r = rmin, r = rmax in case of bonding potential (optional argument).
Default value 6000 kJ/mol

Rmaxtable - cutoff range of the resulting potentials (both intermolecular and
pair bonds) in nanometers (optional argument). Default value is 2.5 nm.
Note that GROMACS requires tabulated potentials to be defined up to
r=rvdw+table-extension (in terms of GROMACS parameters).

34

Figure 4: Original potential - red circles

sigma - Gaussian smoothing parameter measured in resolution of the original
potential (optional parameter). Default value 0.5

interpol - if the potentials should be interpolated, otherwise original resolution
of the table will be kept and npoints value will be ignored (optional
argument). Default - True, potentials are interpolated.

noplot - if interpolated potentials potential/forces should be plotted (optional
argument). Default: False - the graphs are plotted.

hardcopy - if the plots should be saved as *.eps files (optional argument).
Default value - True.

figsize - size of the plot in inches (x,y) (optional argument). Default size is
(14,8).

dpi - resolution of the plot in dpi (optional argument). Default value: 120 dpi.

Examples:
MagicTools.PotsExport2Gromacs(Pots) - simplest call with default parame-
ters.
MagicTools.PotsExport2Gromacs(Pots[0:10], sigma=0.1, zeroforce=True, interpol=False)

- export only first 10 potentials from the set; do not use dense net for inter-
polation; use averaging with sigma=0.1 (very narrow gaussian); do not export

35

forces, write zeros instead.

3.6.18 xmol2gro

Converts *.xmol file ifilename* to a *.gro file ofilename*.

molnames* - list of molecular types that are present in the system

nmols* - list stating how many molecules of the respective type are present in
the system

natimol* - list stating how many atoms each molecular type has

nconf - how many configurations to write.

Example: MagicTools.xmol2gro(input.xmol, output.gro, molnames=[’DMPC’,’WAT’],

nmols=[98,2700], natimol=[118,3], nconf=1)

3.6.19 gro2xmol(ifilename, ofilename=’output.xmol’)

Convert *.gro file ifilename* to a *.xmol file ofilename. Example:
MagicTools.gro2xmol(ifilename, ofilename=’output.xmol’)

3.6.20 tpr2mmol(tprfile)

Convert GROMACS binary run input file *.tpr to a set of *.mmol files. Useful
for preparing input data for the bead mapping with CGTraj or for the RDFs
calculation.
Example: MagicTools.tpr2mmol(’mdrun.tpr’)

3.6.21 Convert2NewFile pot(potfile,mcmfile)

Convert an old *.pot file from MagiC-1.0 format to the MagiC-2.0 file format.
The generated potential-file will have same name as an old one, with additional
suffix ”.v2.”

potfile* - filename of the original ”old” ver 1.0 file

mcmfile* - file or list of mcm-files (or mmol-files), in the same order as they
were introduced in the respective IMC calculation where the potential was
obtained.

Example:
MagicTools.Convert2NewFile_pot(’01.dmpc16-100a.i001.pot’,’dmpc_NM.CG.mcm’)

3.6.22 Convert2NewFile rdf(rdffile, mcmfile)

Convert an old *.rdf file from MagiC-1.0 format to the MagiC-2.0 file format.
The generated rdf-file will have same name as an old one, with additional suffix
”.v2.”

rdffile* - filename of the original ”old” ver 1.0 file

mcmfile* - file or list of mcm-files (or mmol-files), in the same order as they
were introduced for rdf-calcualtion

Example:
MagicTools.Convert2NewFile_rdf(’dmpc16-100aa-rdf-mdyn.rdf’,’dmpc_NM.CG.mcm’)

36

3.6.23 DFset - set of Distribution Functions

DF set is an object class representing a set of Distribution Functions (RDF,Potential,Potential
correction, etc.).

Properties:

Name - Name of the set (typically name of the file the set was read from)

Kind - Kind of functions collected in the set: RDF or POTENTIAL

NTypes - Number of different atom/bead types used in the set

Types - Names of the atom/bead types

Min, Max - Range of distance values for non-bonded interaction functions

Npoints - Number of points in non-bonded interaction functions

DFs - List of functions (all functions in the set)

DFs NB - List of non-bonded interaction functions

DFs B - List of pairwise bond interaction functions

DFs A - List of angle-bending bond interaction functions

Methods:

DFset() - Construct the object from provided rdf/pot file (MagiC 2.0 format)
or from the provided parameters (old fashion)

Write() - Write the set of functions to the file (.rdf or pot).

Plot() - Plot the set of functions

Examples:
import DFset - import the class
RDFref=MagicTools.ReadRDF(’dmpc.400ns.v2.rdf’) - read a set of RDFs,
which is and object of the class DFset.
RDFref2=DFset.DFset(’dmpc.400ns.v2.rdf’) - other way to read the set, giv-
ing exactly the same result
RDFref2.Plot() - Plot the functions.
RDFref2.Write(’RDFref2.rdf’) - Write the set to the file.
RDFref2.Name - Access the specific property of the set (Name)
RDFref2.DFs[0] - Access the first function of the set (they are indexed from 0)
RDFref2.DFs_B[0] - Access the first pairwise bond related function of the set
(they are indexed from 0)

3.6.24 DF - Distribution Function

DF is a object-oriented class, which is supposed to reproduce basic features of a
single distribution function (e.g. RDF, bond length distribution, angle distribu-
tion, intermolecular potential, angle-bending potential, correction to potential,
etc.).

The class contains properties and methods, which are common for every
function, however, some methods are redefined when necessary to keep function
specificity:

37

Properties:

Name - Name of the function

Kind - Kind of the function: ’RDF’ or ’POTENTIAL’

Type - Type of the function: It can be ’NB’, ’B’ or ’A’, for Non-bonded,
pairwise bond and angle bond, respectively.

Npoints - Number of points in a table defining the function.

Min,Max - Range of distances(Å)/angles(deg) where the function is defined

Resol - Resolution of the table

g[:, 0:2] - The table (numpy array) defining the function. g[:,0]-keeps argument
(r,angle), g[:,1]-keeps function’s value

AtomTypes - (NB only) Names of the atom/bead types involved in the inter-
action represented by the function

BondNumber - (B/A only) Number of the bond represented by the function.

MolTypeName - (B/A only) Name of the Molecular type the bond function
refers to.

AtomGroups - (B/A only) List of atom pairs/triplets involved in the bond

Methods:

Plot() - Plot the function, using matplotlib library

Save() - Write the function in a tabulated format to a text file.

Smooth() - Smooth values of g[:,1] using Savitzky-Golay 5 points smoothing
procedure

Trim(tolerance) - Cut function’s (g[:,1]) left and right tails which have values
smaller then tolerance

Examples:
import DF - import the class
RDFref=MagicTools.ReadRDF(’dmpc.400ns.v2.rdf’) - read a set of RDFs,
which is and object of the class DFset, containing a number of DF-objects.
rdfNB=RDFref.DFs[0] - Access the first function of the set. It is an object of
class DF representing a non-bonded RDF.
rdfNB.g - Access the table of the function
rdfNB.Plot() - Plot the function
rdfNB.AtomTypes - See what bead/atom types are involved in the function.
rdfB=RDFref.DFs_B[0] - Access the first pairwise bond related function of the
set (they are indexed from 0)
rdfB.MolTypeName - See the name of the molecular type the bond function
belongs to.

4 File formats

4.1 .xmol

This is plain text single configuration or trajectory file format, which can be pro-
duced by many molecular modeling packages, including MDynaMix, MagiC, or
converted from *.gro by gro2xmol.py script subsubsection 3.6.19. It consists of
a number of consequent frames, with each frame having the following structure:

38

line 1: Number of atoms in the frame (N)

line 2: A commentary line

line 3: Name(atom1) X(atom1) Y(atom1) Z(atom1)

line 4: Name(atom2) X(atom2) Y(atom2) Z(atom2)

lines 5,6...,N+2: Names and coordinates of atoms 3 - N.

In case of trajectory, configuration files from each time frame are written
consequently one after another.

There is no common requirements for the commentary (second) line. For
CGtraj module of MagiC it is assumed that the second line of each configuration
follows this format (accepted in MDynaMix):

(char) <time> (char-s) BOX: <box_x> <box_y> <box_z>

where (char) is any character word, <time> is time in fs, <box_x> <box_y> <box_z>

(following after keyword BOX). The length unit is Ångströms and time unit is
femtoseconds. The time step information is not needed for CGTraj but the
box size information is essential. If no box size information is present in the
trajectory, the box size information can be supplied in the input file, but the
later has a sence only in constant-volume simulations.

In xmol-files produced by MagiC the second line may have no time-stamp
and box sizes.

4.2 .mmol

MMOL is a molecular topology file format, which is inherited from MDynaMix
MD software. It consists of two parts: first part describes atomic composi-
tion, geometry, charges, masses and non-bonded interactions; the second part
defines bonds, angles and torsions in the molecule. MMOL-topolygy files are
required by cgtraj (subsection 3.2) for converting high-resolution trajectory to a
coarse grained one and for calculation of the reference distribution functions rdf
(subsection 3.3). In both cases only information from the first section of .mmol
file (information about atomic composition) is used, and the bonding part may
be omitted.

The first part of the file, which is part of interest has the following structure:
The first non-commentary line of a .mmol file is the number of atoms in the
molecule. After it the corresponding number of lines follows, one line per atom.
Each line contains 8 compulsory parameters. They are: 1) atom name in the
program; 2),3) and 4) are the initial X,Y,Z coordinates of the atom in the
molecular coordinate system, 5) mass in atom units, 6) charge, 7) Lennard-
Jones parameter σ in , 8) Lennard-Jones parameter ε in kJ/M. Two optional
columns may present. Note also, that for the correct work of CGTraj utility, the
only important information is the number of atoms in the molecule and masses
of atoms.

4.2.1 MMOL Example: H2O.mmol

#==I

Molecular Dynamics Data Base I

Configuration and interaction potential I

#==I

39

SPC H2O model I

#==I

Number of sites

3

X Y Z M Q sigma epsilon

(A) (kJ/M)

O 0. 0. -0.064609 15.9994 -0.82 3.1656 0.6502

H1 0. -0.81649 0.51275 1.008 0.41 0. 0.

H2 0. 0.81649 0.51275 1.008 0.41 0. 0.

We care only up to this line! The rest of this file can be skipped.

Num. of strings for the reference

4

SPC water model

Parameters from:

K TOUKAN AND A.RAHMAN,

PHYS. REV. B Vol. 31(2) 2643 (1985)

Num. of bonds

3

#ID(typ) N1 N2 Reqv Force D RHO (A**-1)

1 1 2 1. 2811. 420. 2.566

1 1 3 1. 2811. 420. 2.566

0 2 3 1.633 687. 0. 0.

Num. of angles

0

Num of dihedrals

0

Additional options

flexible SPC water

fSPC

4.3 .mcm

Coarse-grain topology file, which is similar to CG.mmol, but includes infor-
mation about bead/CG-atom types and intramolecular bonds. In general it
consists of three parts: the first part describes atoms involved in the molecule,
the second part contains list of covalent-like bonds and the third part lists angle-
bending bonds. An individual .mcm file should be provided for each molecular
type present in the system. These files are automatically generated by rdf.py
utility during computation of th e reference distribution functions.

Format of .mcm file:
NB! Lines beginning with ’#’ or ’ !’ are commentaries, they are dropped while
parsing the file.
First the atom description block is specified:
1 line: Number of bead/atoms in the molecule (Natoms)
Natoms lines: Atom records. One record per line.
Each record contains 8 parameters. Atom name; X,Y,Z coordinates (Å) of the
atom in a local coordinate system, mass (au.); charge (el.); index of the atom
type; name of bead/atom type. The short-range non-bonded interaction be-
tween a pair of beads/atoms will be defined by the bead/atom types defined
in this file. Atoms of the same atom type interact by the same non-bonded
potential.
Then the pairwise bond block is specified:

40

1 line: The total number of pairwise bond types present in the molecule
(Nbonds).
Then for every individual bond type (of Nbonds) one need to specify:
1 line: Number of atom pairs which are involved in the bond of this type
(NPairs);
NPairs lines: List of such atom pairs, one pair per line.
Then the angle bending bond block is specified:
1 line: Total number of angle bending bond types present in the molecule. For
every individual bond type (NAngles) one need to specify:
1 line: Number of atom triplets which are involved in the bond of this type
(NAngles);
NAngles lines: List of such atom triplets, one triplet per line.

NB! In the first version of MagiC the triplet used to had unusual order:
central atom stands last in the triple, e.g. triplet 1 3 2, defines angle between
1-2 and 2-3. Now it is changed to the regular 1-2-3 order, and to avoid misun-
derstanding rdf.py utility automatically writes Order=1-2-3 after the number
of total angle bending bonds.

4.3.1 MCM Example: DMPC.CG.mcm

The mcm-file listed below defines 10-beads model of DMPC-lipid, as shown on
figure 5.

Figure 5: Example: 10-beads CG model of DMPC-lipid. Beads and bonds of
same color have same type; solid lines denote covalent bonds; dashed arrows
denote angle bending bonds.

#Number of atoms

10

Name X Y Z Mass Q NumofType NameofType

N -6.1804 -17.2679 17.2781 73.139 0.76 1 N

41

P -9.6995 -17.2121 14.915 123.0256 -0.89 2 P

C2 -18.1023 -13.2828 10.2371 56.108 -0.0 3 CH

C3 -21.9375 -11.5562 7.3382 56.108 -0.0 3 CH

C4 -24.5552 -9.7683 3.2938 57.116 -0.0 3 CH

C6 -15.3122 -17.1232 8.1441 56.108 -0.0 3 CH

C7 -18.7644 -15.0198 5.1392 56.108 -0.0 3 CH

C8 -21.6201 -13.2988 1.0155 57.116 -0.0 3 CH

C1 -14.7182 -15.6667 12.7078 72.0638 -0.09 4 CO

C5 -13.3132 -18.7418 11.2877 71.0558 0.22 4 CO

#

Here we define covalent like bonds

Total number of covalent bond types: 5

5

Covalent bond N-P

One atom pair belongs to covalent bond type 1

1

Define pair of atoms by their numbers in the list above: 1 (N) 2 (P),

the third number should always be 1 for covalent bond.

1 2

Covalent bond P-CO

Two atom pairs belong to covalent bond type 2

2

Define 2 pairs of atoms by their numbers in the list above: 2 (P) and 9,10 (C1,C5)

2 9

2 10

Covalent bond CH-CH

Four atom pairs belong to covalent bond type 3

4

Define 4 pairs of atoms by their numbers in the list above: 3-4, 4-5, 6-7, 7-8

3 4

4 5

6 7

7 8

Covalent bond type 4

2

9 3

10 6

Covalent bond type 5

1

9 10

#

Here we define angle bending bonds

Total number of angle bending bonds:5

5

Two atom triplets belong to angle bond type 1:

OBS! Triplet has unusual order: central atom stands last in the triplet, e.g.

triplet 1 9 2 means angle 1-2-9, with 1,9 on sides, and 2 on corner.

2

1 2 9

1 2 10

Two atom triplets belong to angle bond type 2:

2

2 9 3

2 10 6

42

angle bond type 3:

2

9 3 4

10 6 7

angle bond type 4:

2

3 4 5

6 7 8

angle bond type 3:

2

3 9 10

6 10 9

4.4 .rdf and .pot file formats

File formats for .rdf and .pot files are valid fo MagiC v. 2.0 and higher. The
format of files for .rdf and for potentials is similar and we give here a common
description of it refering as ”RDF/potential” file format.

The RDF/potential file consists of a header section, marked by tags &General
and &EndGeneral describing general properties of the RDFs/Potentials set for a
specific system, and independent RDF/potential records, marked &Potential

... &EndPotential or &RDF ... &EndRDF respectively, which specify RDF/po-
tentials for each individual interaction. Each individual RDF/Potential can be
included to the RDF/potential file from a separate file by include statement.

Non-Bonded (NB) RDF/Potentials are identified by atom types involved in
the RDF/Potential. Pairwise (B) and Angle-bending (A) bonds are identified
by the molecular type they belongs to and the relative bond number in the
molecular type. Each Potential can be protected from correction (Fixed) by
specifying the flag Fixed=True in the corresponding section of the potential
file.

4.4.1 Header

&General - &EndGeneral

The header defines common properties of the RDFs/potentials provided in
the file. Since individual RDF/potential records can be included from external
files, the header section provides important information which helps to provide
consistency between all records.

NTypes - Number of bead/atom types present in the system.

N NB, N B, N A - Number of Non-Bonded, pairwise Bonded, and Angle-
bending records, respectively

NPoints - Number of points in each NB-record.

Min, Max - Range of distance (in Å) where Non-Bonded RDF/Potentials are
defined

4.4.2 RDF/potential record:

&RDF ... &EndRDF
or
&Potential ... &EndPotential

43

Each individual record specifies one RDF/potential, providing information
the CG atom types, range, number of points and the data-table with actual
values. A record can be also included from a separate file. Every record consists
of specifications, data table (&Table...&EndTable) and optional include section
(&IncludePotential...&EndIncludePotential).

Name - Name of the RDF/potential record. Is used as a comment line

Type - Type of the record. Can be NB, B, A, i.e. non-bonded, pairwise bond,
angle-bending bond, respectively

Min, Max - Range (in Å) where the record is defined

NPoints - Number of points in the record. Note, that for the core region of
RDF, which has zero values and often omitted, the Min value is typically
not zero

AtomTypes - For NB-record, specifies the pair of bead/atom types which are
involved in the interaction.

MolType - For B- or A-record, specifies molecular type the bond belongs to.

BondNumber - For B- or A-record, specifies a relative number of bond to
which this record belongs. Note that bonds are indexed locally, with
respect to the molecular type, the same way as in corresponding mcm-file
for the given molecular type

NPairs or NTriplets - Number of atom pairs (triplets) involved in the bond
(B- or A-bond)

Pairs or Triplets - List of atom pairs (triplets) involved in the bond. Pairs/Triplets
are comma separated, and atom numbers are separated by dash symbol
(-) withing each pair/triplet. For triplets, atom numbers are specified in
a direct way, so the central atom of the triplet is a central atom of the
angle. Atoms are numbered locally, with respect to the molecular type,
same way as in the corresponding mcm-file for the given molecular type).

&Fixed - Potential file only. If stated, the potential will be excluded from the
inverse procedure (e.g. it will be fixed in potential update/refinement)

&InitZero - RDF-file only. If the corresponding potential is not provided,
initiate it with zero. Default for NB-potentials.

&InitPMF - RDF-file only. If the corresponding potential is not provided,
initiate it with Potential of Mean Force. Default for bond-potentials (both
A- and B-).

&Table...&EndTable - Actual table defining the RDF/potential. The first
column specifies distance (Å) or angle (deg), the second column specifies
value, which is unitless for RDF and kJ/mol for potential. The table shall
be uniformly spaced, and the same grid resolution should be used in all
RDFs and potentials of the same kind (NB, B or A) for the whole system

&IncludePotential=IncludeFileName or

&IncludeRDF=IncludeFileName - Instead of providing data table in the
record, one can import it from an external file ¡filename¿. This feature al-
lows to easily incorporate potentials previously obtained for other systems
into the current one.

44

4.4.3 Included Potential/RDF

&IncludedPotential ... &EndIncludedPotential
&IncludedRDF ... &EndIncludedRDF The included record has nearly identical
format as the parental RDF/potential section. The record specification values
shall be also in agreement with the corresponding values of the parental section,
to provide consistency of the whole set of RDF/potentials for the studied system.

Name

Type

Min, Max

NPoints

AtomTypes - NB interactions only

MolType - For bonds only

BondNumber - For bonds only

NPairs or NTriplets - For bonds only

Pairs or Triplets - For bonds only

&Table...&EndTable

Note that &Fixed, &InitZero and &InitPMF keywords are not applicable in the
included record, but shall be used in the main potential/RDF file instead.

45

	What's new
	Version 2.0

	Installation and setup
	Getting started
	Fast Installation
	Environment variables
	Manual Compilation
	CGTraj
	Magic-core
	RDF and MagicTools

	Using MagiC
	Basic principles of the coarse-graining procedure
	CGTRAJ: Bead Mapping
	Input/output files:
	cgtraj.inp: main input file
	Example: cgtraj.inp

	rdf.py: Reference Distribution Functions calculation
	rdf.inp: main input file
	Example: rdf.inp

	MagiC core: Inverse Solver IMC/IB
	General description
	Input/Output files
	magic.inp: main input file
	Example: magic.inp

	MagicTools: Juggle with MagiC's data
	Reading the data
	Plotting and Inspecting the data
	Numerical analysis of the potentials
	Saving the data
	Exporting potentials: GROMACS

	MagicTools procedures reference:
	ReadRDF
	ReadPot
	ReadMagiC
	LoadDFs
	PlotAllDFs
	DFset.Plot
	Deviation
	AnalyzeIMCOuput
	TotalPots
	GetOptEpsilon
	PotsEpsCorrection
	PotsPressCorr
	SaveDFsAsText
	DumpDFs
	SplitDFset
	GromacsTopology
	PotsExport2Gromacs
	xmol2gro
	gro2xmol
	tpr2mmol
	Convert2NewFile_pot
	Convert2NewFile_rdf
	DFset - set of Distribution Functions
	DF - Distribution Function

	File formats
	.xmol
	.mmol
	MMOL Example: H2O.mmol

	.mcm
	MCM Example: DMPC.CG.mcm

	.rdf and .pot file formats
	Header
	RDF/potential record:
	Included Potential/RDF

