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We present a straight-forward implementation of a practical hierarchical multiscale modelling
scheme which enables us to start from first-principles atomistic computer simulation and suc-
cessively coarse-grain the model by leaving out uninteresting degrees of freedom. Using the
Car-Parrinello method or our recently developed highly efficient tight-binding-like approximate
density-functional quantum mechanical method, we first perform ab initio simulations. From these
first-principles simulations we obtain a set of atomistic pair-wise effective interaction potentials to
be used as a force field with no empirical data for subsequent classical all-atom simulations while
scaling up the system size 2–3 orders of magnitude. The atomistic simulations similarly provide a
new set of effective potentials but at a chosen coarse-grain level suitable for large-scale mesoscopic
or soft-matter simulations beyond the atomic resolution. Show several examples are shown of how
this scheme is done based on effective interaction potentials to tie together the various scales of
modelling.
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1. SIMULATIONS AND THE REAL WORLD

From the very early days of computer simulations three
practical parameters have been, and still are, crucial in
performing computer experiments. All of them are equally
important and are assigned their values collectively based
on the available computing resources at the moment. For
the purpose of discussion we can illustrate them as they

∗Author to whom correspondence should be addressed.

span an operational space with three “orthogonal” axes as
bases: (1) System size (2) Motional time scalea (3) The
accuracy of the model

In moving inside this space of computer simulations it
is necessary to choose an optimal region to keep the com-
putations feasible while producing reliable results. “Com-
promise” is the key word. During the early decades of
molecular computer simulations little effort was put to
improve the methods and the models. This may have
mainly been because of the phenomenally rapid devel-
opment in the computer technology (steadily following
the Moore’s law) helping the users to move the opera-
tional points further out along the three axes thereby mak-
ing the simulations more and more realistic each year.
Although limited in today’s standards, quite a few of the
early simulation works are in many ways ground breaking,
in particular how the analysis of the trajectories was based
on statistical mechanics, thermodynamics and response
theory in order to compare simulations with many real
experiments. Most early molecular dynamics (MD) com-
puter simulations of biomolecular systems, however, start-
ing from a crystal structure can now be considered as
rather meaningless simply because the time covered in

aIn Monte Carlo simulations this corresponds to the number of moves.
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the simulation was far too short to observe anything of
value during the few hundred picoseconds MD simulations
which were considered as the “state-of-the-art” during the
late 80’s. In addition, too small simulation cells (size) and
too short cut-off radii (accuracy) caused many artifacts and
led to many wrong conclusions.

Today’s multi-core desk-top computers allow conven-
tional MD simulations of systems containing order of
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100 000 atoms to cover times to hundreds of nano sec-
onds using particle mesh Ewald summation to treat the
long-ranged Coulombic interactions. Although this is a
tremendous improvement it is still not enough to study
complex biological processes. Or to design new materi-
als with desired properties which would require the sim-
ulations to be connected all the way from molecules to
industry scale. During the last two decades several new
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simulation methods have been introduced to stretch the
time and length scales very much further. Also schemes
were proposed to increase the accuracy by bring molec-
ular dynamics (MD) to the domains of quantum mechan-
ics (QM) and thereby to the first principles of physics.
This allows MD simulations free of any empirical param-
eters (such as potential functions or molecular mechanical
(MM) force fields) as input. The most widespread tech-
nique of this kind of methods is the Car-Parrinello molecu-
lar dynamics.1 Hybrid methods mixing QM and MM based
schemes2�3 are also common tools today. The most inter-
esting development may still be the schemes beyond atom-
istic resolution to model meso- and nano-scale systems
and soft matters.4�5 In other words there are now reliable
simulation methods available to treat a system at three
levels of physical description (QM, MM and mesoscopic
soft matter), where the accuracy is successively decreas-
ing while allowing the system length and time-scales to
be increased. Examples of these are Car-Parrinello molec-
ular dynamics, classical atomistic MD based on MM force
fields, and dissipative particle dynamics (DPD). In com-
mon terminology, models beyond the atomistic resolution
are result of coarse-graining (CG). There is no unique
way to do coarse-graining within off-lattice framework.
For heterogeneous systems like biological molecules some
ways from ad hoc to parameterize CG potentials have
been used6�7 while for homogeneous systems, like in mate-
rials design, finite element and grid-based models are
commonly employed. In the case of biological systems a
coarse-grained description of water molecules surrounding
biomolecules represents a great challenge. Such simplifica-
tions may include implicit description of the solvent with
the help of solvent-mediated potentials8 or coarse-grained
representation of solvent molecules.7 The problem is how-
ever how we can specify interaction potentials for such
coarse-grained models.

In this paper, we first discuss a straight-forward hierar-
chical multiscale modeling approach which enables us to
link together different levels (physical models) of simula-
tions, ranging from electronic structure level to those of
mesoscale. In the next section, an efficient ab initio elec-
tronic structure computation scheme is presented which
provides substantial time saving comparing to the con-
ventional DFT calculations. Thereafter several applications
are presented: derivation of molecular-mechanical (MM)
potentials from ab initio simulations, solvent-mediated
potentials between ions and polyions in aqueous solu-
tions, and coarse-grained modeling of lipids and lipid
assemblies.

2. HIERARCHICAL MULTISCALE
MODELLING APPROACH

In this section we describe a general approach how to
use results of a more fundamental, more accurate the-
ory, to construct simplified, coarse-grained models to be

Fig. 1. Hierarchical multiscale approach: Results of simulations of a
more detailed model are used to build a model for simulation on a larger
scale. Within the process, the size of the system increases while the level
of details decreases.

used in large-scale simulations9 according to the scheme
depicted in Figure 1. The idea of the approach is the fol-
lowing: First, we carry out detailed simulations on a more
fundamental, ab-initio level. Such simulations provide full
information about the system, although on a limited length
scale for reasons pointed out above. From these detailed
simulations we can determine a set of radial distribution
functions (RDFs) between sites representing interesting
degrees of freedom. Then we ask: which interaction poten-
tial within a coarse-grained model would reproduce the
very same set of RDFs as we obtained in the detailed
model? To obtain the answer to this question, we need to
solve an inverse problem: reconstruct interaction potentials
from the previously obtained RDFs. If the inverse prob-
lem can be solved, we have in hand effective interaction
potentials, which for the coarse-grained model reproduce
the same structural properties of the system as detailed,
ab initio model. This allows us to increase the length scale
of the problem and thus to use the computed effective
potentials for simulations on considerably larger scale.

It is clear that the key to this approach is the solution
of the inverse problem. It is known from the theory,10 that
the solution of the inverse problem is unique in terms of
pairwise potentials and RDFs. If we consider all possible
potentials (not only pairwise), the solution of the inverse
problem is no longer unique. However, from the computa-
tional point of view, we are interested just in pairwise solu-
tions: the very aim of coarse-graining is the computational
speed-up, and use of many body potentials would greatly
hamper this goal. The pairwise potentials, obtained from
the RDFs within the inverse approach, can be considered
in some sense as “the best possible” pairwise approxima-
tion to the true many body mean force potentials.

There exist also alternative schemes to buid effective
coarse-grained potentials by targeting other then RDF
properties of the detailed system. One of them is the
“force matching” approach.11�12 The idea is to fit pair-
wise potentials by minimizing the square deviation of the

J. Comput. Theor. Nanosci. 6, 1–9, 2009 3
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force acting on each coarse grained site from its “exact”
value obtained from the detailed model. Similarly, one can
also think about fitting the potential energy.13 In the case
of linking ab initio and “atomistic molecular mechanical”
levels of description, “exact” forces acting on individual
atoms or energies are directly available from the ab-initio
level of simulations, and the force- or energy- matching
approaches can be used straight-forwardly. However on the
next level of multiscale modeling, which binds the atom-
istic and coarse-grained levels of description, the exact
potentials of mean force for coarse-grained units is typi-
cally unavailable, and some additional assumptions have to
be made.14 In this paper we concentrate on the multiscale
modeling approach where the target is radial distribution
functions.

The effective coarse-grained potentials can be derived
from RDFs with the help of the Inverse Monte Carlo
(IMC) method originally suggested by us in Ref. [8].
Briefly, the IMC method consists in the following. Assume
that the Hamiltonian (potential energy) of the studied sys-
tem can be represented as a sum of pairwise interactions:

H =∑
i� j

V �rij 	 (1)

where V �rij 	 is a pairwise potential, and rij the distance
between particles i and j . Let us first apply a grid approx-
imation to digitalize the Hamiltonian:

Ṽ �r	= V �r
	≡ V


for

r
−
1

2M
< r < r
+

1
2M



r
 = �
−0�5	rcut/M 
= 1� � � � �M (2)

where rcut is a cutoff distance and M is the number of grid
points within the interval �0� rcut�.

Then we can rewrite the Hamiltonian (Eq. 1) as:

H =∑



V
S
 (3)

where S
 is the number of pairs between the particles with
their mutual distances inside 
-slice. S
 is an estimator of
the radial distribution function:

�S
� = 4�r2��r	N �N −1	/�2V 	 (4)

Equation (3) can be readily generalized for the case of
different interaction sites, where index 
 runs both over
all pairs of sites and distance intervals and corresponding
�S
� represent a complete set of pair distribution functions.
Even intramolecular bond, angle and torsion potentials can
be represented in form (3). Then index 
 runs even over
possible (discretized) values of the bond lengths, angles
and torsions, with V
 values representing the correspond-
ing bond, angle or torsion potentials and �S
� correspond-
ing to distributions over bond lengths, angles or torsions.

In all cases, average values of �S
� can be acquired from
a detailed simulation of a small system.

The average values of S
 are also some functions of the
potential V
, which is initially unknown. Anyway, one can
write down expansion:

��S
� =
∑
�

��S
�
�V�

�V� +O��V 2	 (5)

where the derivatives ��S
�/�V� can be expressed using
the exact statistical mechanics relationships:8

��S
�
�V�

=−��S
S��−�S
��S��	/�kT 	 (6)

Equations (5) and (6) allow us to define interaction poten-
tials V
 from radial distribution functions �S
� iteratively,
starting from some trial potentials (for which the potentials
of mean force can always be chosen). Conventional MC
simulations with a trial potential are carried out in which
averages of S
 and their cross correlations �S
S�� are
determined. Then a set of linear Eq. (5) without second-
order term is solved which yield corrections to the trial
potential. After each interaction, the potential is corrected
according to:

V �i+1	 = V �i	+
�V �i	 (7)

where �V �i	 is determined from (5) at each iteration �i	,
and 
 is a regularization parameter between 0 and 1. The
procedure is repeated until convergence. More details on
the inverse Monte Carlo procedure can be found in the
earlier papers.8�9

There exist a few other approaches which can be used
to invert RDFs. Soper introduced an “empirical poten-
tial structure refinement” method (also known as “iter-
ative Boltzmann inversion”) in which pair potential is
corrected at each iteration according to the mean field
approximation:

V �i+1	 = V �i	+kT ln
g�i	�r	

gref�r	
(8)

Correction of potential according to (8) is straightfor-
wardly to implement, and such an approach was used
in a number of studies.15�16 In cases when several dif-
ferent types of coarse-grained sites, and correspondingly
several different potentials are involved, cross-correlations
between RDFs according to Eqs. (6)–(7) need to be taken
into account in order to provide convergence.

In some cases it is possible to solve the inverse problem
using a numerical solutions of the liquid theory equations,
for example Hypernetted-Chain (HNC) approximation.17

In the case of solvent-mediated potentials between ions,
HNC solution was found to provide very accurate solutions
of the inverse problem, coinciding with the results obtained
by the inverse MC simulations.18 We should also mention
a few other works devoted to the inverse problem.19–22

4 J. Comput. Theor. Nanosci. 6, 1–9, 2009
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3. ELECTRONIC DEGREES OF FREEDOM:
AB INITIO TIGHT-BINDING LIKE
DFT METHOD

In this section we describe an approach which provides
us with simulation data on the most detailed, ab-initio
level. Electronic structure calculations are essential in the
study of the properties of molecules and materials. In the
past decades, many electronic structure calculation meth-
ods have been developed. Of the methods, those devel-
oped from the density functional theory (DFT)24–26 have
become very popular. Currently, DFT methods can be used
to study a system of up to about 100 atoms with con-
siderable accuracy. Despite such great advance, DFT cal-
culations are still very time-demanding. For systems of
several hundred atoms or more, such calculations are far
too slow to be applied in practice. In recent years, tremen-
dous progresses have been made in developing efficient
and reliable approximate electronic structure calculation
methods that can be used for a wide variety of purposes,
for example, for modeling the forces on atoms in atomistic
molecular dynamics computer simulations. One of such
advances is the development of ab initio tight-binding-
like (AITB) electronic structure methods which can be
hopefully used as a general tool for electronic structure
calculations.27–29 We give short outline of our recent work
on the development of such an accurate yet highly efficient
AITB method.23

AITB methods usually start from the Harris-Foulkes
functional30�31 which is equivalent to expanding the
electron–electron interactions in the Kohn-Sham energy
functional with respect to a reference density �̃, keeping
only the zero-th order approximation and the first order
correction, and neglecting the second order and higher
order corrections. In order to make the calculations simpler
and faster, we made a further simplification of the Harris-
Foulkes functional. The simplified functional is given as

EHF =
Nocc∑
i

fi�i−
1
2

∫ ∫ �̃�r1	�̃�r2	

r12

dr1 dr2

+Exc��
�0	�−

∫
��0	�r	Vxc��

�0	�r		dr+VI−I (9)

with

Vxc�r	=
$Exc���r	�
$��r	

(10)

where fi is the occupation number on orbital i. Exc is
the exchange-correlation energy functional and Vxc is the
so-called exchange-correlation potential. � is the electron
density. VI−I is the ion–ion interaction term. The orbital
energy �i is found from the following one-electron orbital
equation:[

−1
2
% 2

1 +Vext�r1	+
∫ �̃�r2	

r12

dr2 +Vxc��
�0	�r1		

]
	&i�r1	�

= �i	&i�r1	� (11)

where Vext is the external potential. Compared to the orig-
inal Harris-Foulkes functional,30�31 our simplification is in
the exchange-correlation part. Equation (9) is equivalent
to expanding the Coulomb and exchange-correlation inter-
action terms in the Kohn-Sham energy functional with
respect to �̃ and ��0	, respectively, and neglecting all the
second order and higher order corrections. Thus, the error
in the total energy caused by such simplification is also
only in the second order and would have only a minor
effect on the calculation results.

The reference electron densities �̃ and ��0	 we used are
super-positions of spherically distributed atomic-like den-
sities having the forms

�̃�r	=∑
I

�̃I �rI 	 (12)

and
��0	�r	=∑

I

�
�0	
I �rI 	 (13)

respectively, with

�̃I �rI 	= �
�0	
I �rI 	+�nIfI �rI 	 (14)

where �
�0	
I is the valence electron density of neutral atom

I and fI �rI 	 corresponds to the density of a single electron
in the highest occupied atomic orbital. rI = 	r−RI	 is the
distance between r and atomic site RI. �nI can be con-
sidered as the net number of electrons that atom I obtains
in a molecular system and is determined by

�EHF

��nI
= 0 (15)

Equation (15) leads to a set of (�nI) required in solving
Eq. (11). Therefore, in practical calculation, (�nI) and
Eq. (11) are solved self-consistently.

Under the LCAO-MO approximation, molecular orbitals
are linear combinations of atomic orbitals, that is,

&i =
∑
*

C*i,* (16)

where (,*) represent atomic orbitals. The coefficients
(C*i) and the orbital energies -i can be obtained by solv-
ing the following equation self-consistently:

FC = SC� (17)

with
S*. = �,*	,.� (18)

and

F*. =
〈
,*

∣∣∣∣−1
2
% 2

∣∣∣∣,.

〉
+�,*	Vext	,.�

+
〈
,*�r1	

∣∣∣∣
∫ �̃�r2	

r12

dr2

∣∣∣∣,.�r1	

〉
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+�,*�r		VXC���0	�r			,.�r	�

=
〈
,*

∣∣∣∣−1
2
% 2

∣∣∣∣,.

〉
+
〈
,*

∣∣∣∣
∑
I

V
�PP	
I

∣∣∣∣,.

〉

+
〈
,*�r1	

∣∣∣∣
∑
I

∫ �
�0	
I �r2	

r12

dr2

∣∣∣∣,.�r1	

〉

+∑
I

�nI

〈
,*�r1	

∣∣∣∣
∫ fI �r2	

r12

dr2

∣∣∣∣,.�r1	

〉

+�,*�r		VXC���0	�r			,.�r	� (19)

where V �PP	
I is the pseudo-potential due to the nucleus and

core electrons of atom I .
In our approach, ��0	I and fI �r	 are all expanded as lin-

ear combinations of 1S type gaussians by least-square fit-
tings. V �PP	

I corresponds to the norm-conserving separable
dual-space pseudo-potential devised by Goedecker, Teter,
and Hutter32 for DFT calculations. The atomic orbitals
(,*) are also expressed as linear combinations of primitive
gaussians. Therefore, it is clear that all the integrals, except
for those related to the exchange-correlation potential and
energy functional, can be expressed as closed forms and
calculated analytically.

For the calculation of integrals related to the exchange-
correlation potential or energy functional, the approx-
imation of many-center expansion is adopted. For the
off-center integrals, the same expansion formula as that
given by Horsfield28 is used, that is

�,I
	Vxc���0			,J3� = �,I
	Vxc���0	I +�
�0	
J 		,J3�

+ ∑
K� 
=I� J 	

�,I
	Vxc���0	I +�
�0	
J +�

�0	
K 	

−Vxc���0	I +�
�0	
J 		,J3� (20)

For the on-site integrals, we developed an improved many-
center expansion scheme by including higher order terms
in the original expressions of Horsfield. The improved
integrals are given as

�,I
	Vxc���0			,I3� = �,I
	Vxc���0	I 		,I3�
+ ∑

J � 
=I	
�,I
	Vxc���0	I +�

�0	
J 	

−Vxc���0	I 		,I3�+$VI
� I3 (21)

and∫
�
�0	
I �r	�XC��

�0	�r		dr

=
∫
�
�0	
I �r	�XC��

�0	
I �r		dr

+ ∑
J � 
=I	

∫
�
�0	
I �r	��XC��

�0	
I �r	+�

�0	
J �r		−�XC��

�0	
I �r		�dr

+$EXC� I (22)

with

$VI
� I3 ≈ 1
2

∑
J � 
=I	

K� 
=I� J 	

�,I
	Vxc���0	I +�
�0	
J +�

�0	
K 	+Vxc��

�0	
I 	

−Vxc��
�0	
I +�

�0	
J 	−Vxc��

�0	
I +�

�0	
K 		,I3� (23)

and

$EXC� I ≈
1
2

∑
J � 
=I	

K� 
=I�J 	

∫
�
�0	
I �r	��XC��

�0	
I �r	+�

�0	
J �r	+�

�0	
K �r		

+�XC��
�0	
I �r		−�XC��

�0	
I �r	+�

�0	
J �r		

−�XC��
�0	
I �r	+�

�0	
K �r		�dr (24)

In the above equations, 
 and 3 denote atomic orbitals
and I , J , and K denote atoms. �XC is the exchange-
correlation energy density. $VI
� I3 is the correction for the
on-site potential integral and $EXC� I is the correction for
the energy integral.

In practical AITB calculations, the integrals required
are often obtained by finding the corresponding integrals
in local coordinate systems through the interpolation of
the look-up tables and then by transforming the integrals
from the local coordinate systems to the molecular coordi-
nate system. Except in those for the one-center integrals,
in look-up tables are integrals calculated on a pre-defined
mesh of inter-atomic distances in the local coordinate sys-
tems. For more details of the theoretical background the
reader is referred to Ref. [23].

4. EXAMPLES

4.1. Derivation of Site–Site Atomistic Interaction
Potentials from Ab Initio Simulations

Pairwise atom–atom potentials for classical molecular
dynamics simulations can be derived from RDFs computed
in the above described AITB method, or in more con-
ventional ab initio, for example Car-Parrinello molecular
dynamics simulations. At today’s level of computer power,
it is possible to carry out Car-Parrinello ab-initio simu-
lations for a few hundred of atoms on a several tens of
picoseconds. As a first test of the suggested methodology,
Car-Parrinello simulations of water (32 and 64 molecules)
have been carried out, in which oxygen–oxygen, oxygen–
hydrogen and hydrogen–hydrogen RDFs were computed.
Then these RDFs used sent as input to our IMC procedure
and the effective potentials for water were thus obtained.
They came out rather similar to those of the conventional
SPC water model, with some differences at short distances
between atoms, see details in Ref. [34]. While the obtained
water potential was not superior to the “standard” empiri-
cal water models like SPC or TIPnP (the above potentials
were very thoroughly fitted to reproduce the properties of
real water), this example demonstrated that it is possible
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to obtain realistic interatomic potentials solely on the basis
of ab-initio simulations.

In another example, the effective potential between Li+

ion and water was computed from ab initio RDFs. It turned
out that non-electrostatic part of this potential has a simple
exponential form, without any specific attractive interac-
tion term:35

Veff�r	= A exp�−Br	 (25)

with A = 37380 kJ/M and B = 3�63 Å−1. This potential
produces a hydration shell for the Li+ ion in a good agree-
ment with available experimental neutral scattering data.
Later this potential was used in classical molecular dynam-
ics simulations of a Li-salt ion solution in which diffu-
sional behavior of Li+ ions was studied.36 These examples
showed that such completely ab initio parameterization of
interaction potentials can be used in cases where necessary
experimental data to parameterize empirical potentials are
not available.

4.2. Effective Solvent-Mediated Ion–Ion and
Ion–DNA Potentials

At the next level of coarse-graining, the explicit descrip-
tion of water molecules can be removed and substituted
by effective solvent-mediated potentials between solute
molecules, while atomistic molecular mechanical models
of macromolecules can be substituted by their coarse-
grained representation. Figure 2 shows an example of
such coarse-graining in the case of ionic environment
of DNA, where all the water molecules in the atomistic
model, as well as atomistic details of the DNA struc-
ture, are removed, resulting in the coarse grained DNA
model in the presence of solvated ions (right panel). The
number of degrees of freedom is reduced by factor 50. The

Fig. 2. Atomistic and coarse-grained representations of ionic environment of DNA. The number of degrees of freedom in the coarse grained model
is reduced by factor 50.

effective solvent-mediated potentials between the solutes
of the coarse grained model are computed by the inverse
Monte Carlo method from the RDFs obtained in atomistic
simulations.

The effective potentials were obtained first for Na+

and Cl− ions in water solutions.8�37 It turned out that
at large distances (more that 10 Å), the effective Na–Cl
potential is very close to the Coulombic potential in a
media with dielectric permittivity of water (- = 80), but
at shorter distances it showes a few oscillations, reflecting
the effects from the structure of water molecules. In fur-
ther development, effective solvent mediated potentials
between different alkali ions and DNA were computed
from atomistic simulations of ions in a water layer around
a DNA fragment.38 These ion-DNA effective potentials
were used in coarse-grained simulations of ion atmosphere
around DNA. It was found that in these simulations, the
relative binding affinities of different alkali ions to DNA
follow the order: Cs+ >Li+ >K+ ≈Na+.38 This order was
just found previously in experimental studies of very dif-
ferent nature (Donnan equilibrium, ion exchange, NMR,
circular dichroism) which represented a puzzle because of
the location of Li+ ion between Cs+ and K+. It is impossi-
ble to clarify such ordering with continuum solvent mod-
els only (such as the primitive electrolyte model), while
atomistic simulations of a fully equilibrated ionic atmo-
sphere around DNA are even now not feasible. However,
our multiscale approach with effective solvent mediated
potentials derived exclusively from atomistic simulations
produced the experimental order of binding affinity auto-
matically. It becomes also clear that the stronger affinity
of Li+ ion (in comparison with Na+ and K+) is explained
by specific hydration shells of DNA phosphate groups cre-
ating a favourable “pocket” for Li+ ions. This favourable
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binding site was reflected in RDF-s computed in atom-
istic simulations, and then led to a more attractive effective
solvent-mediated potential for Li+ ions.

4.3. Coarse-Grained Phospholipid Model for
Bilayers and Vesicles

Simulations of lipid membranes have attracted much atten-
tion during the last decade due to the fact that such mem-
branes form outer shells of living cells. However, atomistic
simulation of even a small piece of membrane consisting
of about 100 lipids and surrounding water is a compu-
tational challenge, while many actual biophysical prob-
lems, such as studies of membrane mechanical properties,
fusion, morphology, rafts formation, etc, require consid-
eration of substantially larger membrane fragments. For
investigation of all these phenomena in molecular simula-
tions, coarse-grain level of modeling provides practically
the only possible choice.

As another example of our multiscale modeling scheme,
the effective solvent-mediated potentials for 10-sites CG
model of DMPC lipid molecule have been constructed.39

The starting point was a system of 16 lipid molecules dis-
solved in 1600 waters which has been simulated at the
atmistic scale for 30 ns. The CHARMM27 force field
with partial charges recalculated by fitting the electro-
static potential (ESP) from ab-initio Hartree-Fock calcu-
lations was used. The radial distribution functions as well
as distributions of intramolecular distances between the
coarse-grained sites were determined from these atomistic
simulations. They were used as an input to the IMC pro-
cedure which yielded the interaction potentials, both inter-
and intra-molecular, between all coarse-grained sites.

The coarse-grained model, derived in the way described
above, was used in subsequent simulations of lipid sys-
tems on longer length- and time-scales, both within MC
and MD simulations. First, it was demonstrated that the
coarse-grained model provides the same structure of a
plane bilayer as the atomistic model.39 Then a number of
other simulations, with the number of lipids in the range
of 400–5000 and the system size of 200–500 Å was per-
formed. It was shown that, depending on conditions, lipids
organize themselves in different structures. If the number
of lipids is small (less that 1000) the prevailing resulting
structure is a bicell (a piece of bilayer of discoid shape).
A larger bilayer fragment (with 3500 lipids) was found to
spontaneously form a spherical vesicle. At larger lipid con-
centration, a tendency to form multi-lamelar structures was
observed. An example of the formation of such a multi-
lamelar structure is shown in Figure 3, which contains a
snapshot of a system consisting of 5000 coarse-grained
DMPC lipids in a periodic box of 400 Å, obtained after
50 ns Langevin molecular dynamics simulation started
from a randomly initiated condition. The distance between
the layers in the formed multi-lamelar stack was deter-
mined as 60 Å, in a perfect agreement with experimental

Fig. 3. Formation of multi-lamelar structures in Langevin dynamics
simulation of 5000 coarse-grained DMPC lipids in a periodic cubic box
of 400 Å. A snapshot after 50 ns of simulation started from random ini-
tial condition is shown. The choline groups of lipids are shown in blue,
phosphates yellow, ester groups red and hydrocarbon tails green.

value for DMPC lipids. Such a distance means that there is
a space of about 20 Å between the surfaces of neighboring
layers, filled by water. It is remarkable that this distance
is reproduced even in our coarse-grained model without
explicit water. Thus the coarse-grained model, developed
exclusively from all-atomic simulation data, reproduces
well all the basic features of lipids in water solution.

5. CONCLUSIONS

A hierarchical true multiscale modelling approach pre-
sented here links together three levels of molecular mod-
elling: ab initio molecular dynamics, classical molecular
dynamics and meso-scale simulations. The method pro-
viding the link between these levels is the Inverse Monte
Carlo approach. For the ab initio molecular dynamics,
a highly efficient and accurate AITB scheme was recently
developed. Thus the described methodology provides a
consistent scheme to build molecular models for different
scales without the need of empirical fitting of parameters.
Some elements of this scheme were also demonstrated.
Of course, there is still a very long way to go to define
properties of molecules or materials exclusively in silico,
and some tuning of the models against available experi-
mental data is always an option. Also, transferability of
the coarse-grained potentials need to be checked in every
case. Nevertheless the suggested approach would increase
the fraction of “ab-initio” derived features in molecular
models in expense of “ad hoc” or “empirically fitted” ones,
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which would enhance reliability of molecular simulations,
increase their predictive power and open possibilities to
address to new “large-scale” problems which are not yet
considered in the “molecular simulation” domain.
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