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Abstract 
      In this review we present the expanded ensemble 
method for calculation of free energy and related 
properties in computer simulations. The basis of the 
method, its methodological aspects and facilities are 
discussed. We trace the relationship of this method to 
other relevant approaches for free energy 
computations unified under the name “generalized 
ensemles”. Finally, we consider the most important 
applications of the generalized ensemble techniques to 
problems of physical, chemical and biological 
interest. 
 
1. Introduction 
      Calculation of free energy and other related 
quantities (chemical potential, entropy) in computer 
simulations is a much more difficult computational 
problem  than  that  of  the  structural  properties.  The
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basic problem is that the free energy and other quantities involving contribution from 
entropy, cannot be obtained by a simple (direct) averaging of an appropriate function of 
particles coordinates and velocities. Meanwhile knowledge of free energy and related 
quantities is extremely important for understanding of many processes and phenomena 
in physics, chemistry and biology. Free energy plays the key role in determining 
directions and trends of molecular phenomena such as phase transitions, solvation, 
conformational transitions in macromolecules, chemical equilibria, to mention a few. 
 During the last decades several schemes have been suggested in literature to 
calculate free energies using computer simulations [1, 2, 3, 4, 5, 6]. Most of these 
methods require a considerable number of repeated computer runs and face difficulties 
or even fail for systems with strong coupling parameters or at high densities. 
 About ten years ago the authors of this review suggested an approach called the 
expanded ensemble Monte Carlo (EEMC) method [7] which soon proved to be an 
efficient and precise instrument in computing free energies. The method turned out to be 
promising in treatment of systems at high density, low temperature, with rough 
multiminima potential landscape, in presence of complicated molecular components. 
 Besides the free energy computation, the EE method turned out to be a very efficient 
tool to treat the ’multiple minima’, or ’metastable states’ problem. Such problems 
typically arise in studies of systems near phase transition point or other kinds of 
structural transitions, for example in protein folding. A comprehensive review of the 
applications of the generalized ensemble methods to treat these kinds of problems has 
been recently given by Iba [8]. In our review, we shall concentrate on applications of the 
expanded ensemble method to compute free energy and related quantities. We review 
the basis of the method, its most important applications and facilities. We shall try also 
to trace the relationship of the EE method to relevant approaches developed in other 
simulation groups. 
 
2. Generalized ensemble methods 
2.1 Expanded ensemble method 
 Consider a canonical (NVT) ensemble with the configurational part of the 
Hamiltonian h(q) and introduce a ”reduced” Hamiltonian H = −βh. Let H0 – be the 
Hamiltonian of the system for which the partition function is known exactly (e.g. of the 
ideal gas). We introduce a set of Hamiltonians H0, H1, …. , HM so that, with the increase 
of the index m, 0 ≤ m ≤ M, the Hamiltonian Hm is gradually transfered from H0 into HM 
= H (so called ”mutation”). One can use for instance a linear function: 
 

 (1) 
 
with 0 = λ0 < λ1 < … < λM = 1, or other dependence of the same kind. 
 For each m consider a canonical ensemble with the configurational partition 
function 
 

 
(2) 
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 Now we introduce an ”expanded” ensemble with the partition function: 
 

 
(3)

 
 
where ηm are modification (also called balancing, or preweighting) factors. The optimal 

choice of ηm will be discussed below. Each of the canonical ensembles with the index m 
now becomes a subensemble of the generalized, or expanded (augmented), ensemble. 
 The MC random walk in the expanded ensemble is being carried out according to a 
conventional Metropolis procedure with two kind of steps: 1) usual configurational shifts 
within a certain subensemble (change of a microstate), yielding a purely Boltzmann 
sampling, and 2) change of the parameter λm to the neighbouring one with m → m ± 1 
at fixed configuration (i.e. change of a macrostate). In both cases the acceptance 
probability is determined as: min(1, exp(∆(Hm + ηm)). 

 In the course of MC run the number of visits to the m-th subensemble, nm, is 
determined and the related probability (the weight of the macrostate, the “histogram”) is 
then estimated as: pm = nm/n, n being the total number of MC steps. On the other hand it 
is clear that 
 

 (4) 
 
and hence it follows: 
 

 
(5)

 
 
 Thus we can obtain free energy differences for any pair of subensembles. As far as 
the free energy of the subensemble "0" is considered to be known we can get the 
absolute value of the free energy, i.e. for m = M and k = 0 we get: 
 

 (6) 
 
 By properly adjusting values of ηm (η0 is usually chosen equal to zero) we can attain 

nearly flat distribution in pm so that the value of ηM yields the main contribution to free 

energy, βF. 
 By choosing the specific kind of expansion parameter we arrive at different types of 
expanded ensembles. If ”mutation” corresponds to change of temperature with the 
Hamiltonian being fixed we get the β-expanded ensemble or ”simulated tempering” of 
Marinari and Parisi [9]. An example of this type is given in the original work [7]. If the 



A.P. Lyubartsev & Vorontsov-Velyaminov 

 

4

extreme Hamiltonians, H0 and HM, differ by additional presence of an extra particle then 
this is the method of gradual insertion of a particle proposed by Nezbeda and Kolafa in 
[10]. Later, this version of EE has been employed by Wilding and Müller for insertion of 
a polymer chain into a polymer melt [11]. Another example of EE, expansion over the 
number of particles or N-expansion, is given in ref. [7] as well as in earlier [12, 13] 
works (see also recent paper [14]). Pressure expanded NpT -ensemble was used in [15] 
for calculating the equilibrium lattice constant in a hexagonally arranged pattern of 
DNA-molecules. In work [16], fourth space coordinate was introduced and treated 
within expanded ensemble formalism in which one subemsemble with all fourth 
coordinates equal to zero was the physical system. Different variations of the expanded 
ensemble will be discussed in more details in this review below. 
 Optimal choice of the total number of subensembles (M + 1) and of specific 
dependence of λm on m is the item of methodological concern. 
 
2.2 Optimization of parameters of the expanded ensemble 
 It is evident that for the EE method to be successful, two conditions must be 
satisfied. The first one is that probabilities pm should not be too small (one must be able 
to evaluate them in a finite simulation run). The second is that the transition rate between 
subensembles should be high enough to provide a fast exploration of the expanded 
configurational space. The first condition may be achieved by a proper choice of the 
balancing factors ηm, while the second one by a proper choice of amount and distribution 

of subensembles, i.e., by the set of λm. 

 It is clear from (5) that a flat distribution of probabilities pm is obtained if balancing 

factors ηm are equal (or differ by a constant) to free energies of the subensembles, i.e. to 
quantities which we want to calculate. That is why one have to use a special procedure to 
optimize the balancing factors. The simplest way to do this is to use an iterative 
procedure with short trial runs. One starts from some (e.g. zero) initial values of ηm, 

make a short EE simulation run and evaluate probabilities pm in some (usually narrow) 
interval of subensembles. Then one corrects balancing factors for the next iteration by: 
 

 
(7)

 
 
 In this relation i

mp  and i
kp  are visiting probabilities for boxes m and k at i-th 

iteration. If some boxes were not visited at all, one can set probabilities for them at the 
“lowest detectable” level, pm = 1/Nsteps where Nsteps is the number of MC steps in the 
simulation. This way of optimization of balancing factors was used in our original work 
[7] and in a number of subsequent EE simulations [17, 18] 
 The described above simple way to optimize balancing factors works well if 
parameters ηm are already more or less close to the optimal values. If we have no idea 
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what the optimal values of ηm are, the primitive iterative procedure starting from zero ηm 
values may take too long time. A procedure for initial choice of the balancing factors 
was introduced in work [19]. According to this work, separate short preliminary MC 
runs are arranged in each subensemble and average energies < Um > in each of them are 
evaluated. Then initial values of (0)

mη  are calculated by 
 

 
(8)

 
 
 This relation directly follows from the general Gibbs-Helmholtz equation between 
internal energy U(β) and free energy F(β ): 
 

 (9) 
 
 After initial estimation of ηm, a few iterations within the EE scheme are made during 
which the balancing factors are further optimized according to (7). Then the production 
run follows, typically when deviations in pk do not exceed 10 % from the ideal value  
 

1

1M +
=idp . 

 
 Another methodological concern is to choose optimally the number of subensembles 
(boxes), M +1, and the specific (optimal) dependence of the expansion parameter on m. 
The number of boxes is chosen so as to provide, for the established pair of boundary 
states H0 and HM, sufficiently high probability of transitions between neighbouring 
boxes, m → m ± 1. Also, the dependence of the expansion parameter on m should serve 

to optimize transition rates in the whole range of m. A smaller number of subensembles 
leads to a fast decay in the acceptance ratio of transitions and to a larger statistical error. 
A very large number of subensembles means a longer path between the ends, that also 
results in a higher statistical errors despite of more frequent transitions between the 
neighboring subensembles. A study of optimal choice of the number of subensembles 
has been made in work [20] for the Lennard-Jones fluid as an example. It was shown 
that the best results were obtained when the acceptance ratios for the transitions between 
the subensembles was about 30%, though this number is not crucial. Good estimations of 
free energies with only slightly higher statistical error were obtained when the 
acceptance ratio varied between 15 and 70 %. 
 We should stress that the choice of parameters of the expanded ensemble (both ηm 

and λm) do not influence the final output result but of course may strongly influence the 
efficiency of the calculations. 
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2.3 Multicanonical or Entropuic sampling 
 Methods which are quite close to the EEMC are the multicanonical sampling (MS) 
suggested by Berg and Neuhaus in 1992 [21] and entropic sampling (ES) introduced by 
Lee in 1993 [22]. Both of these methods proved to be completely equivalent to each 
other, see e.g. [23]; so both terms, MS and ES, to our point of view, can be treated as 
synonyms. 
 While in EEMC one aims at attaining flat distribution in temperature, volume or 
other expansion parameter, in the case of MS or ES the aim is to obtain flat distribution 
in  energy.  Hence  we  can  treat  them  as an Energy-expanded microcanonical 
ensemble 
 Consider the canonical configurational partition function in the form: 
 

 
(10)

 
 
where Ω(E) is the density of energy states. 
 The conventional canonical Metropolis MC procedure of obtaining the trial state 
includes a homogeneous choice of microstate in coordinate space (q) (that yields 
distribution in energy Ω(E)) with addition of the canonical distribution factor, 
exp(−βH(q)). Finally it results in canonical distribution in energy: p(E) = 

ConstΩ(E)exp(−βE) 

 On the other hand if we arrange a MC random walk in the configurational space (q) 

so that the additional probability function (instead of the canonical factor exp(−βH(q))) is 

chosen to be the inverse of Ω(E), i.e. w(E(q)) = |Ω(E(q))]−1, then the “natural” factor 

Ω(E) is completely compensated and the distribution over E, p(E), becomes flat. 
 This approach appears to be extremely important for simulation of complex systems 
with rough potential landscapes such as polypeptides and proteins, spin glasses and also 
cases of first order phase transitions (see e.g. papers of Janke [24] and of Smith and 
Bruce [23]). 
 As long as densities Ω(E) are initially unknown or are known approximately, an 

iterative procedure for obtaining flat p(E) distributions is necessary. 

 Hansmann and Okamoto [25] pointed to an important fact that distributions w(E) in 
multicanonical sampling and balancing factors of the temperature expanded MC method 
(simulated tempering) yielding in each case flat distributions p(E) or p(β) are related by 
a Laplace transform: 
 

 
(11)

 
 
 It follows that weight factors for the two algorithms can be calculated from each 
other. Comparative calculations carried out in [25, 26] for a peptide Met-enkefalin with 
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the aid of both methods have shown that both of them being closely related are equally 
effective in the numerical work. 
 Yan et al[27] have implemented “two-dimensional” density of state calculation by 
organizing  random  walk in two-dimensional space of particle number and energy. 
Other  recent  developments in multicanonical sampling algorithms is given in work 
[28]. 
 Still in a number of papers (see e.g. the review [29]) it is pointed out that the 
procedure of adjustment of w(E) (or ηm in the EE method) ”can be tedious and time-
consuming”. The way to alleviate this drawback of both lies in application of the Replica 
exchange method developed in 1996-1997 which will be discussed further in a separate 
section. Another way to overcome this problem in ES method was suggested recently by 
Wang and Landau in works [30, 31] 
 
2.4 Wang-Landau algorithm in ES method 
 The Wang-Landau (WL) -algorithm can be considered as self- (or auto-) adjusting 
procedure for obtaining w(E(q)) = |Ω(E(q))]−1 in multicanonical or entropy sampling 

simulations. The energy range of interest, Emin < E < Emax , is being divided into a finite 

number, Nb, of equal intervals (”boxes”), ( )E EE
N
−∆ = max min

b
. All the initial values of 

Ω(Ei) corresponding to these boxes are taken to be equal (e.g. in [30] they were all taken 
equal to 1). In order to avoid processing with large numbers it is convenient to introduce 
entropy distribution S(Ei) = ln Ω(Ei) (in [30] the initial values of S(Ei) are zeros). Two 

sets of counters are introduced in the procedure, both of the length Nb: one is for S(Ei) 
and another is for visits of energy states to calculate the relevant probability distribution 
(a histogram) p(Ei). Each state (configuration) of the simulated system corresponds to a 
definite value of energy and hence it belongs to one of Nb energy intervals (boxes) 
introduced in the range Emin < E < Emax . A MC step includes a standard trial change of 
the state with a uniform coordinate distribution and further applying the following 
transition probability condition: 
 ( )= [1, exp[ ( ) ( )]]S E S E ′′→ −i ip i i min . If this condition is fulfilled the trial state 

( )′i is accepted, in the opposite case the accepted state is the the initial configuration (i). 

Finally the entropy of the accepted state (S(Ei) or ( )S E ′i ) is augmented by ∆S and the 
corresponding counter of visits is augmented by 1. 
 A certain number of such elementary steps, m, constitute a sweep. At the end of the 

current sweep the value of ∆S is changed according to the relation: ∆S → a∆S where   
0 < a < 1 is an increment (in [30] a=0.5 though other values could also be used). 
 After several sweeps the S(Ei) dependence is formed and fine tuned in the whole 
range of E. Further continuing of the procedure results only in addition of a constant to 
the S(Ei)-dependence. It corresponds to the flat character of the histogram p(Ei) which is 
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reached simultaneously. This way the density of states  Ω(Ei) = exp(S(Ei)) can be 
calculated rather accurately in a very large range of orders of magnitude, e.g. from 10−1 
to 10−30 or even to lower orders. It provides calculation of canonical partition function 
and averages, such as energy and heat capacity in a wide temperature range by numerical 
integration of the appropriate function with the the canonical distribution of energy p(E) 

= Const Ω(E)exp(-βE) 
 Wang-Landau algorithm, first implemented for a lattice spin system, was promptly 
generelized to lattice polymers [32], off-lattice simulations [33], path-integral Monte 
Carlo [34]. 
 
2.5 Replica exchange method 
 ”Replica exchange method” (REM) or ”Parallel tempering”(PT) were suggested 
recently in a number of papers (e.g. [35] and a review [29]). It appears to be very 
suitable for parallelization. 
 Suppose we have M+1 subensembles in the EE method. In conventional EE 
procedure a single system is walking freely in the space of expansion parameter, e.g. 
temperature, jumping from one subensemble to another. In the case of the replica 
exchange method each of M + 1 subensembles is inhabited by an independent system (a 
”copy”, a ”replica”) so that the total number of replicas is also M + 1. If the expansion 
parameter is the inverse temperature, βm, then the procedure is usually called ”Parallel 
tempering”. Thus the latter term can be considered as a designation of a specific case of 
the general approach ”Replica exchange method” (the relation of terms is the same as 
between ”Expanded ensemble method” and ”Simulated tempering”). The procedure of 
REM includes: 
 
 (1) Conventional MC steps with changes of configurations (microstates) in each of 
independent replicas. For these steps both MC and MD procedures can be used. 
 (2) Simultaneous exchange of macrostates (e.g. values of temperatures in PT) 
between pairs of replicas occurring in the adjacent subensembles, i and i + 1 (e.g. i = 1, 

3, 5, … or i = 2, 4, 6, …, see [36]). The acceptance of exchange is decided according to 

the Metropolis rule. Suppose we try to transpose the replica i occupying the position m 

with the replica j occupying the position n (usually n = m + 1). The acceptance of such a 
trial move is decided according to the following rule [29]: 
 

 (12) 
 

where ∆ = (βn − βm)(E(q[i]) – E(q[j])) and E(q[i]) is the potential energy of the i-th copy. 
 This way each replica can visit all the subensembles. This is very important for 
investigating systems with rough potential landscapes, e.g. polypeptides, and also 
supercooled liquids (see for instance [36]). 
 An attractive feature of replica exchange method is that it does not require a 
preliminary adjustment of balancing factors or other parameters which is necessary in 
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EE or ES methods. At the same time it should be pointed out that free energy cannot be 
evaluated within REM approach in the same straightforward way as it can be done via 
EE procedure. Other methodological issues of the parallel tempering are discussed in 
work [37]. 
 
2.6 Other generalized ensembles 
 In a series of papers Hansmann, Okamoto and coworkers developed a generalized 
ensemble method which allows better to sample multicanonical distributions and they 
carried out calculations for small peptides within both MC and MD numerical procedure 
[38, 39, 40, 41, 42, 43, 44]. They also implemented a new parallel tempering technique 
to solution of the same problem [40, 41, 42, 43, 44, 45]. Among other techniques related 
to generalized ensembles (many of which are in fact equivalent to the discussed above) 
we can name bicanonical ensemble [46], multiensemble sampling [47], adaptive 
umbrella sampling [48], Hamilton scaling Monte Carlo [49], hyperparallel tempering 
[50], histogram-reweighting Monte Carlo [51] and multicanonical replica exchange [52]. 
 
3. Applications 
3.1 Free energy calculations for some model systems 
 In the first applications of the expanded ensembles [7, 53], the expansion parameter 
was determined as λm = βm/β, where β = 1/kT and Hamiltonian of the reference system 
was set to zero: H0 = 0. This case corresponds to the temperature expanded canonical 
ensemble, since a change of the parameter λm may be interpreted as a change of 

temperature: Tm = 1/(kβm). Case βm = 0, or Tm = ∞, corresponds to the absence of 
interactions, or to the ideal gas system with the known free energy. That is why, in the 
temperature expanded canonical ensemble one can calculate absolute values of free 
energies in the whole temperature interval from the given temperature to infinity. 
 In this formulation the EE method was applied to calculation of free energy for the 
restricted primitive model of an electrolyte at a very low temperature (β = 20, in natural 
units). The same scheme was suggested independently by Marinari and Parisi in [9] who 
called their method ”simulated tempering”. They have applied their scheme to 
investigate a random field Ising model. Temperature expanded canonical ensemble was 
also used in subsequent paper of our group [54] for calculating free energy of a quantum 
two-dimensional Hiesenberg ferromagnet within Handscomb MC procedure. 
 The molecular dynamics version of the temperature expanded ensemble was first 
tested in work [17] for a Lennard-Jones system and for water represented by rigid and 
flexible simple point charge (SPC) models. A good agreement was found between 
molecular dynamics and Monte Carlo simulations for the same systems. Molecular 
dynamics simulations, however, turned out to be more efficient for molecular liquids like 
water. 
 
3.2 Chemical potential 
 If H differs from H0 by presence of an extra single particle and the process of 
mutation of the Hamiltonian from H0 to H consists of gradual insertion of this particle 
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then we get another example of the EE MC method. Such a scheme was suggested for 
instance by Nezbeda and Kolafa [10] who applied it to calculations of the chemical 
potential in a hard sphere fluid at high packing fractions within canonical ensemble MC 
procedure. The idea of gradual insertion of a particle stems to the earlier paper of Mon 
and Grifiths [55]. The particle insertion method with balancing factors in NPT-ensemble 
was suggested in earlier works of our group [12, 13]. An analogous scheme within 
canonical and grand canonical ensembles was suggested by Kaminsky in [56] who 
implemented his scheme of ”augmented” ensembles to chemical potential – density 
calculations for hard sphere and LJ fluids. Free energy of cavity formation in a dense 
hard sphere fluid was carried out by Attard [57] within his ”force balance” MC scheme 
which actually also appears to be a variant of the EE method. Application of the 
multicanonical sampling in Wang-Landau formulation to compute chemical potential is 
described in [58]. 
 Wilding and Müller [11] were the first who applied the gradual particle insertion EE 
MC procedure for calculating chemical potential in a polymer system. For polymers 
other methods (e.g. Widom’s method [1]) become practically inapplicable since 
probability of direct insertion of a chain into a dense polymer system is vanishingly 
small. In paper [11] this probability was estimated indirectly and appeared to be                
p ∼ 10−10 – 10−80 depending on density and other input parameters. Instead, one can 
introduce a penetrable “ghost” chain, with excluded volume and thermal interactions 
changing as parameters of the expanded ensemble. 
 Another version of chemical potential calculations for a dense polymer system was 
suggested by Escobedo and Pablo [59]. In this approach, a monomer was added or 
deleted from a chosen polymer according to the EE algorithm. In this way, a whole 
polymer chain may be smoothly converted to nothing and back. Later they developed 
this approach further to include also case of Gibbs ensemble simulations and 
hyperparallel tempering [50,60, 61, 62, 63, 64]. 
 In our papers [19], [65] the EEMC method was used in free energy calculations for 
lattice and off-lattice models of free polymer chains with a phantom chains used for the 
reference systems. Lattice phantom chain (a free random walk) was gradually transferred 
into a selfavoiding walk by increasing the energy parameter attributed to each overlap of 
monomers. In work [66] an analogous EEMC procedure was applied for calculating free 
energy (entropy) of closed and stretched athermal lattice polymers. 
 A direct comparison of the EE method with a widespread method of free energy 
calculation, thermodynamic integration(TI), has been made in the work of van der Vegt 
and Briels [67] who calculated chemical potential of chloroform in a swollen polymer. 
EE method was found to probe the simulation box much more efficiently than TI. Other 
comparisons of different methods (including EE-method) for evaluating chemical 
potential of a hard sphere, Lennard-Jones and some other simple models are presented in 
works [68, 69]. 
 In another application, the EE method was used for computations of chemical 
potential of nanoparticles in a hard-sphere polymer [70]. 
 
3.3 Solvation free energies 
 The solvation free energy is determined as the Gibbs free energy change in a process 
of transfer a solute molecule from ideal gas phase into a solvent. Knowledge of this 
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quantity is very important in many industrial and pharmaceutical application, because 
the solvation free energy determines solubility and association of solutes, partitioning, 
phase equilibria, nucleation processes to mention a few. 
 The solvation free energy is closely related to the chemical potential of the solute 
molecule, and its computation can be carried out by the same techniques as for the 
chemical potential. Different techniques to compute solvation free energy existed from a 
long time ago starting from the Widom’s particle insertion method [1] and its 
improvements [71, 72, 73]. Expanded ensemble method with gradual particle insertion 
turned out to be a very efficient way to compute solvation free energies even for large 
and strongly charged solutes. 
 The application of the EE method for computations of solvation free energies is 
rather straightforward (see e.g ref. [18].) In this work, two cases were considered: a 
hydrophobic methane-like molecule and alkali halides ion pairs in water. In the later 
case, the efficiency of the EE method was especially impressive: the solvation free 
energies of ion pairs were determined with precision less that 0.5% and turned out to be 
in very good agreement with experimental data. In work [74], solvation free energy and 
entropy during a process of “charging” of a fictitious ion have been determined. 
Hernandez-Cobos et al have implemented histogram reweighting Monte Carlo method to 
compute solvation free energy of methane or other hydrophobic solutes [75]. 
 In the last few years the EE method has been applied for computation of solvation 
free energies of many complex organic molecules. Khare and Rutledge applied EE 
procedure for obtaining chemical potential of a model benzene fluid at a set of different 
temperatures [76] and of aromatic compounds in n-alkane solutions [77]. They 
considered the λ parameter as a continuous variable. Errington and Panagiotopolous [78] 
have used the EE method for calculation of solvation free energies of benzene and 
cyclohexane in water. These calculations were used for tuning force field parameters 
describing these molecules. 
 Computations of solvation free energies may be used for evaluation of the so called 
logP parameters defining partitioning of some solute molecules between two non-mixing 

solvents in equilibrium. Knowledge of logP parameters is especially important in the 
pharmacology industry as they define general properties of permeability of different 
substancies in the living organisms. In work [79], the EE method was used to compute 
octanol/water logP parameters of rather big, up to 50 atoms, organic drug-like 
compounds. The solvation free energies were determined both in water and in octanol 
solution and then the corresponding logP parameters were evaluated. 
 
3.4 Osmotic pressure 
 Osmotic pressure may be defined as a volume-derivative of the free energy of solute 
particles (for example, ions). Application of the EE method to compute the free energy 
difference as a function of distance between DNA rods in a system of oriented and 
hexagonally ordered DNA molecules has been described in work [15]. In this case, the 
expansion parameter of EE was the distance between DNA, which was proportional to 
the volume of the system. This implementation of the EE is referred to as volume-
expanded NVT ensemble. The resulting dependence of free energy on volume allows 
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one to determine osmotic pressure dependence on separation parameter in the ordered 
system of DNA molecules. In the case of divalent counterions this dependence has a 
minimum corresponding to the stable equilibrium ordered phase of the system. 
 The same approach was used in papers [30, 31] for studying of electrostatically 
induced association of rodlike virus particles. Such association may happen if 
concentration of divalent ions in solution exceed some threshold value which depends on 
the type of added ions. By calculating the osmotic pressure in an ordered polyelectrolyte 
system at different conditions, one can compute effective electrostatic force between the 
charged rods and thus define conditions necessary for association of virus particles. 
Computations using the volume-expanded NVT ensemble [80] yielded results in a 
quantitative agreement with the experiment.  
 Authors of a recent paper [82] implemented volume-expanded isotension (NPT) 
ensemble for calculating properties of a polymer solution confined to a planar slit. The 
slit is in equilibrium with a surrounding bulk solution and the method allows variation of 
the slit width while the polymer chemical potential is being maintained constant. By 
computing the free energy change due to change of the slit width, the osmotic pressure 
and so the force between the two surfaces was evaluated. This approach was later used in 
paper [83] to compute polyampholyte-induced repulsion between charged surfaces. 
 
3.5 Phase equilibria 
 One of the most widespread approaches to study phase equilibria is to use Gibbs 
ensemble technique [84]. This technique is based on performing a simulation in two 
regions, with particle exchange and volume transfer between them so that the total 
number of particle and volume are constant. One of the regions may represent for 
example the liquid phase and another the gas phase, but the algorithm provides equal 
temperature, pressure and chemical potential in both phases. While this technique has 
proved to be very efficient in studies of phase transitions for simple molecular models, it 
turned out to be impractical for more complex, branched or polymer-like molecules, 
since particle transfer between the two phases has in this case very low acceptance 
probability. Even simple models with strong electrostatic interactions (like primitive 
electrolyte model) may pose a problem. The underlying reason is the same as in 
computation of chemical potential by particle insertion: it is very difficult to install a big 
molecule in a liquid. 
 In a series of works Panagiotopoulos and coworkers [49, 78, 85, 86] have developed 
a number of generalized ensembles techniques for investigation of phase equilibria both 
in simple models and complex systems. In work [49] they introduced “Hamiltonian 
scaling” grand canonical Monte Carlo approach which allow one to evaluate grand 
canonical partition function over a range of chemical potentials and applied it to a fluid 
described by the Buckingam exponential-6 potential [49] and primitive electroyte model 
[78, 87]. The formulation of the method followed most closely the multicanonical Monte 
Carlo approach [21] and histogram reweighting method. In work [51] this methodology 
was used to compute the surface tension of the Lennard-Jones fluid within the grand-
canonical ensemble simulations. The generalized ensemble technique helped in this case 
to facilitate transitions between the liquid and gas phases. 
 Multicanonical and histogram reweighting method were used by Smith and Bruce 
[0] for studies of solid-solid phase transitions in a system with hard spheres or square-
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well potential. Multiple histogram method was also used by Ferreira and Barroso [89] 
for determination of the phase diagram and phase coexistence of the Lennard-Jones 
fluid. In work [85], the expanded ensemble method with gradual particle insertions, was 
used to study phase equilibria of water with two higher hydrocarbons, n-butane and n-
hexane. The computational problem of the latter study is closely related to the 
calculation of solvation free energies which was discussed above. 
 A review on application of different versions of generalized ensemble methods to 
simulation of phase transition in fluids is given by de Pablo et al [64]. 
 
3.6 Protein folding 
 The problem of “protein folding” has received much attention in the last decades and 
by now is one of the most challenging problems in structural biology. The general 
question is, what will be the tertiary (globular) structure of a protein having a given 
amino-acid sequence? Finding answer to the question is of vital importance for 
understanding of how the life is functioning. 
 From the statistical-mechanical point of view, the problem may be solved by finding a 
protein configuration having minimal energy, or more exactly, finding a local minima of 
the configurational surface having minimal free energy. Taking in mind that 
configurational surface of, even not very big, protein may have a very big number of local 
minima separated by high - and unknown - potential barriers, it became clear that the 
problem can not be solved by traditional simulational techniques. This is even confirmed 
by the fact that in vivo protein synthesis takes time of the order of seconds or longer, that is 
many orders more than the modern molecular dynamics simulations can afford. 
 The generalized ensemble methods turned out to be very suitable to treat the 
situation with rough configurational surface with multiple energy minima. By linking 
“high” and “low”-temperature states, the generalized ensemble methods may generate 
random walk which does not stack in local energy minima and allow to sample 
efficiently all relevant points of the configurational space. 
 In series of works [25, 38, 40, 42, 43, 90, 91] Hansmann, Okamoto and co-workers 
explored applicability of different versions of generalized ensembles to the protein 
folding problem. In papers [25, 38] they applied multicanonical ensemble and simulated 
tempering (equivalent to the expanded ensemble technique) to study conformational 
transitions between the right- and left-hand forms of one of simple peptides – Met-
enkephalin, consisting of five aminoacids. They found that the rate of transitions 
between the two forms is in fact the same for both approaches. In work [40], parallel 
tempering algorithm has been applied for conformational studies of the same protein. 
Helix-coil transition of Met-enkephalin was studied in [41]. More complex peptides (for 
example, two forms of C-peptide of ribonuclease A, consisting of 13 aminoacids) were 
simulated in [43, 90]. Bartels et al have used the “adaptive umbrella sampling” 
technique (which is in practice a version of multicanonical algorithm) for conformational 
analysis of RN24 protein (13 residues) [92]. Irbäck and Sandelin [93] have implemented 
simulated and parallel tempering to study folding of a model lattice polymer. 
Conformational properties of a similar simple polymer model (helix-coil and random 
coil – beta sheet transitions) were studied by entropy sampling approach within the 
Wang-Landau algorithm in work [94]. More details on recent advances in this area is 
given in reviews [29, 95] 
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 Most of mentioned above “protein folding” simulations were carried out without 
water molecules for mainly methodological purposes. Since natural proteins exist in 
aqueous environment, inclusion of water molecules in simulations is necessary for 
correct prediction of protein properties. Only recently such simulations became possible 
for small peptides. RGDW peptide consisting of four aminoacids has been studied in 
work [48]. Another four-residues peptide (glycine dimer) in water was considered in 
work [96]. Mitsutake et al reported results on conformational study of Met-enkephalin in 
presence of TIP3P water molecules using the generalized ensemble technique [29]. 
 
4. Conclusion 
 In this review we have considered the expanded ensemble computer simulation 
method and related approaches with the common name generalized ensembles. This 
methodology turned out to be very fruitful in solving many important problems in 
computer simulations of complex molecular systems and for computations of 
thermodynamical quantities. In considering the applications of the generalized 
ensembles techniques, the main attention has been paid to systems of chemical and 
biophysical interest. We should also mention that there exist numerous applications of 
the generalized ensembles methods in other areas. A very important application area is 
lattice spin systems (Ising model [9, 97, 98], Potts model [21], spin glases [24, 97, 99], 
other spin lattice models [54]). Other systems of interest are crystals [100], nucleation 
and cluster formation [14, 101, 102], image restoration problem [103], path integrals in 
quantum statistics [7, 34, 104] and even quantum chromodynamics [105, 106, 107], too 
wide range of systems and models to be included into this review.  
 The work has been suppoted by the Russian Foundation for Fundamental Research 
(RFFI) and the Swedish Research Council (Vetenskapsrådet).  
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