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The structure of a complicated quasicrystal approximant "16

was predicted from a known and related quasicrystal

approximant "6 by the strong-reflections approach. Electron-

diffraction studies show that in reciprocal space, the positions

of the strongest reflections and their intensity distributions are

similar for both approximants. By applying the strong-

reflections approach, the structure factors of "16 were deduced

from those of the known "6 structure. Owing to the different

space groups of the two structures, a shift of the phase origin

had to be applied in order to obtain the phases of "16. An

electron-density map of "16 was calculated by inverse Fourier

transformation of the structure factors of the 256 strongest

reflections. Similar to that of "6, the predicted structure of "16

contains eight layers in each unit cell, stacked along the b axis.

Along the b axis, "16 is built by banana-shaped tiles and

pentagonal tiles; this structure is confirmed by high-resolution

transmission electron microscopy (HRTEM). The simulated

precession electron-diffraction (PED) patterns from the

structure model are in good agreement with the experimental

ones. "16 with 153 unique atoms in the unit cell is the most

complicated approximant structure ever solved or predicted.
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1. Introduction

The question regarding the exact atomic positions in quasi-

crystals has confused crystallographers for more than two

decades since the discovery of the icosahedral quasicrystal in

rapidly solidified Al–Mn alloys (Shechtman et al., 1984).

Although quasicrystals are well ordered on the atomic scale,

they are not periodic. Furthermore, the presence of defects

has made it very difficult to solve their structures by single-

crystal X-ray diffraction. An effective way to study the

structure of quasicrystals is to start from quasicrystal

approximants which often coexist with quasicrystals. This is

because the latter normally have similar local atomic struc-

tures as quasicrystals. A series of quasicrystal approximants

are often closely related in terms of their structures. Until

today, many quasicrystal approximants have been found, but

only a few of these structures have been solved by X-ray

crystallography. One of the examples is the family of "
approximants in the Al–TM (TM = transition metal) alloys

(Klein et al., 1996; Sun & Hiraga, 1996; Balanetskyy, Grushko,

Velikanova & Urban, 2004), where the lattice parameters a (’

23.5 Å) and b (’ 16.8 Å) are essentially the same, while the c

parameters of the regular structures are ’12.3, 32.4, 44.9 or

57.0 Å. They are designated as "6, "16, "22, "28 . . . (Balanetskyy,

Grushko, Velikanova & Urban, 2004), where the subscript is

the index l of the strong (00l) reflection corresponding to the

interplanar spacing of � 0.2 nm. Earlier investigations of Al–

TM alloys revealed that it was difficult to synthesize Al–TM



samples with only a single type of " phase. The crystals often

consist of different transitional states that are aperiodic in one

direction. Owing to the difficulty in growing large ordered

single crystals and the complexity of their structures, most of

the approximant structures remain unsolved. Indeed, only the

"6 structure (also known as �0) was solved by single-crystal X-

ray diffraction (Boudard et al., 1996). This situation has

significantly slowed down the further investigations of quasi-

crystal structures.

The structures of crystals too small for single-crystal X-ray

diffraction can be determined by electron crystallography.

Electrostatic potential maps can be obtained by combining the

structure-factor phases from HRTEM images with amplitudes

from HRTEM images or electron-diffraction patterns. A

successful application is to the

complicated quasicrystal approx-

imant �-AlCrFe with space group

P63/m, a = 40.687 and c = 12.546 Å

(Zou et al., 2003). A three-

dimensional electrostatic poten-

tial map was calculated by

combining the structure-factor

phases from HRTEM images and

amplitudes from selected-area

electron-diffraction (SAED)

patterns of 13 zone axes. 124 of

the 129 unique atoms in the unit

cell were found from the electro-

static potential map. However,

this method requires extensive

experimental work for the deter-

mination of complicated struc-

tures such as quasicrystal

approximants. First, a sufficient

number of high quality images

which contain phase information

needs to be collected. Unfortu-

nately, the phases from HRTEM

are affected by many uncertain

factors, such as defocus, astigma-

tism, crystal thickness and orien-

tation. Extracting the real phases

therefore relies on advanced

image processing that takes into

account these experimental

conditions (Klug, 1978–1979;

Hovmöller et al., 1984; Zou et al.,

1996). Secondly, in order to obtain

enough intensity information,

many electron-diffraction patterns

of different zone axes must be
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Table 1
List of quasicrystal approximants solved by the strong-reflections approach.

Known structure Deduced structure

Lattice parameters (Å) Lattice parameters (Å)

Phase Space group a (Å) b (Å) c (Å) � (�) Phase Space group a (Å) b (Å) c (Å) � (�) Ref.

m-Al13Co4 C2/m 15.2 8.1 12.4 108 �2-Al13Co4 P2/m 39.9 8.1 32.2 108 Christensen et al. (2004)
�3-ZnMgRE P63/mmc 14.6 8.6 � �5-ZnMgRE P63/mmc 23.5 8.6 Zhang, Zou et al. (2006)

�7-ZnMgRE P63/mmc 33.6 8.9
�-Al4Mn P63/m 28.38 12.39 � �(�)-AlCrSi P63/mmc 32.3 12.4 Zhang, He et al. (2006)

�0-AlCrSi P63/mmc 20.1 12.4 He et al. (2007)
"6 Pnma 23.5 16.8 12.3 "16 B2mm 23.5 16.8 32.4 This work

Figure 1
Selected-area electron-diffraction patterns of "16 along the (a) [001], (b) [010], (c) [100] and (d) [120]
directions.



taken. However, as with HRTEM images, high quality kine-

matic electron-diffraction data are very difficult to obtain,

owing to the multiple scattering of electrons (Zou &

Hovmöller, 2008).

Another effective way of determining approximant struc-

tures, namely the strong-reflections approach, was proposed by

some of the present authors (Zou & Hovmöller, 2008; Chris-

tensen et al., 2004). This approach is based on the fact that the

strongest reflections largely determine the atomic positions in

a structure. By analyzing the relationship of the structure-

factor amplitudes and phases of reflections from a series of

quasicrystal approximants, we found that the strong reflections

that are close to each other in reciprocal space have similar

structure-factor amplitudes and phases for all the approx-

imants in the series (Zhang, Zou et al., 2006). Therefore, the

structure-factor amplitudes and phases of strong reflections

for an unknown approximant can be estimated from those of a

known related approximant. Atomic positions in the unknown

approximant are then obtained directly from the three-

dimensional electron-density map calculated by inverse

Fourier transformation of the structure-factor amplitudes and

phases of the strong reflections. It is important to find the

orientation matrix that relates the known and the unknown

approximants, and re-index the reflections from the known

approximant to the unknown approximant.

Structural models of five compounds in three groups of

approximants (see Table 1) have been successfully deduced

from their known related structures by the strong-reflections

approach (Christensen et al., 2004; Zhang, Zou et al., 2006;

Zhang, He et al., 2006; He et al., 2007). For all these five cases

listed in Table 1, the phase origins (defined by the space

groups) are the same for all structures in the same group. The

structure-factor phases of the known approximant are there-

fore the same as those of the unknown approximant. Here we

present the structure of the "16 approximant in an Al–Rh alloy,

deduced by the strong-reflections approach from the known

structure of the "6 approximant in the same Al–Rh system.

The structure determination in the present case is more

complicated since the origins in space groups Pnma (known

structure "6) and B2mm (unknown structure "16) are different.

The structure-factor phase relations of the symmetry-related

reflections are not consistent in the two structures. In order to

utilize their structure-factor phases, a non-standard origin was

first used and then shifted to the final origin for "16. The "16

approximant has the most complicated structure ever

predicted/determined by electron crystallography or the

strong-reflections approach. Details are presented below.

2. Experimental

Sample alloys with nominal composition Al75Rh25 and

Al77Rh23 were prepared according to the Al–Rh phase

diagram (Grushko et al., 2000). In order to obtain "6 and "16,

additional annealing was applied for up to 69 h at 1323 K to

Al75Rh25 and for 2 h at 1369 K to Al77Rh23. Samples for

transmission electron microscopy observation were crushed

and dispersed on holey carbon

films on Cu grids. Selected-area

electron-diffraction (SAED) and

precession electron-diffraction

(PED) patterns were recorded in a

Jeol 2000FX electron microscope

operated at 200 kV. PED patterns

of "6 and "16 were taken with a

precession angle of � 1.1�, using

the Spinning Star Precession Unit

(Avilov et al., 2007). The 16-bit

digitized SAED and PED patterns

were analysed by the program

ELD (Zou et al., 1993). HRTEM

images were recorded on a Jeol

3010 electron microscope with a

point resolution of 0.17 nm oper-

ated at 300 kV. The projection

symmetry of the crystal was

determined from the HRTEM

images by crystallographic image

processing using the program

CRISP (Hovmöller, 1992). The

program eMap (Oleynikov, 2006)

was used for calculating structure

factors from the structure model,

calculating three-dimensional

electron-density maps from crystal

structure factors, determining peak
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Figure 2
HRTEM image of "16 taken along the b axis. The Fourier transform of the HRTEM image, a symmetry-
imposed image (left) and a simulated image (right) are inserted. There is only one mirror symmetry,
perpendicular to the c axis. Unit cells are marked and the banana-shaped tile and the pentagonal tile are
outlined in the symmetry-imposed image. The simulation was carrried out with �25 nm defocus and
6.6 nm thickness.



positions from the electron-density maps and simulating

HRTEM images and precession electron-diffraction patterns

from the structure model.

3. Results and discussion

3.1. Unit-cell and space-group determination

There are several ways to identify crystallographic features

from electron microscopy. For example, by comparing the net

of reflections between ZOLZ (zero-order Laue zone) and

FOLZ (first-order Laue zone) that emerge at precession

angles > 0.5�, the Bravais lattice and glide planes can be

inferred (Morniroli et al., 2007). The point group may also be

deduced from convergent-beam electron-diffraction (CBED)

patterns. Here we determine the space group of "16 by

combining SAED and HRTEM techniques. Four electron-

diffraction patterns of "16 along the [001], [010], [100] and

[120] directions are shown in Fig. 1. From these, the unit cell
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Figure 3
Precession electron-diffraction patterns of (a)–(c) "6 and (d)–(f) "16, and (g)–(i) the simulated precession electron-diffraction patterns from the derived
structure model of "16. The kinematical simulation conditions are: voltage 200 kV, precession angle 1.1�, and crystal thicknesses (g) 400 Å, (h) 500 Å and
(i) 400 Å. The intensity distributions in reciprocal space are similar for "6 and "16. The corresponding reflections have the same h and k, but l("16) ’ �2

l("6), such that the very strong reflection (006) in "6 corresponds to (00016) in "16.



was determined as B-centered orthorhombic with a = 23.5, b =

16.8 and c = 32.4 Å. "16 has almost the same a and b para-

meters as "6 (unit-cell parameters a = 23.5, b = 16.8, c =

12.3 Å), but c is �2 times that of "6 (� ’ 1.618 is the golden

ratio).

The reflection conditions of "16 deduced from the SAED

patterns are hkl: h + l = 2n.

According to the International Tables for Crystallography

(Hahn, 2002), four space groups – B222 (No. 21), Bm2m (No.

35), B2mm (No. 38) and Bmmm (No. 65) – fulfill these

reflection conditions. These four space groups are possible for

"16 and cannot be distinguished by the reflection conditions

only. Fortunately, the projection symmetries along the b axis

are different for these space groups: cm for B2mm and cmm

for the others. It is possible to determine the projection

symmetry of "16 by analyzing the phases extracted from the

Fourier transform of the HRTEM images taken along the b

axis. This was performed by the program CRISP (Hovmöller,

1992). The projection symmetry of "16 was determined as cm

since the HRTEM image gave a much lower average phase

error for cm (phase residual = 19.5�) than that for cmm (phase

residual = 44.8�). This is also directly confirmed from the

HRTEM image taken along [010] shown in Fig. 2. Only one

mirror perpendicular to the c axis appears in the [010] image,

and no mirror perpendicular to the a axis was found. Thus, the

projected symmetry along [010] was determined as cm but
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Table 2
List of structure-factor amplitudes and phases of 45 strongest independent reflections of "6 (with Pnma) and "16 (with P1 and B2mm).

After the origin has been shifted from that of "6 to (0, 0.25, 0.15625), the phases of symmetry-related reflections [Phase "16 (P1)] are close to those required by the
space group B2mm, with an average phase error of 7.8� and a maximum phase error of 22.5� compared with phases after imposing the B2mm symmetry.

Amplitude
Phase

Phase "16 (B2mm)
"6 "6 and "16

"6 (Pnma) and "16 "16 Origin shifted (0, 0.025, 0.15625)
Symmetry-imposed

h k l hkl hk�l h�k�l h�kl h k l hkl h�kl hk�l h�k�l hkl

0 8 0 2815 0 0 0 0 0 8 0 0 0 0 0 0
0 0 10 2338 0 0 0 0 0 0 26 23 23 338 338 0
8 4 3 2279 0 180 180 0 8 4 8 90 90 90 90 90

18 0 3 2262 180 0 0 180 18 0 8 270 270 270 270 270
10 4 0 2259 180 180 180 180 10 4 0 180 180 180 180 180
11 0 8 2211 180 0 0 180 11 0 21 281 281 259 259 270

3 4 5 2205 180 180 180 180 3 4 13 191 191 169 169 180
7 0 5 2036 0 0 0 0 7 0 13 11 11 349 349 0

11 0 2 2021 0 180 180 0 11 0 5 281 281 259 259 270
0 0 6 2018 180 180 180 180 0 0 16 0 0 0 0 0
0 16 0 1567 0 0 0 0 0 16 0 0 0 0 0 0

26 4 0 1471 0 0 0 0 26 4 0 0 0 0 0 0
8 4 13 1471 0 180 180 0 8 4 34 113 113 68 68 90
0 8 10 1457 0 0 0 0 0 8 26 23 23 338 338 0

18 8 3 1454 180 0 0 180 18 8 8 270 270 270 270 270
21 4 8 1433 0 180 180 0 21 4 21 101 101 79 79 90
11 8 8 1406 180 0 0 180 11 8 21 281 281 259 259 270

8 12 3 1288 0 180 180 0 8 12 8 90 90 90 90 90
13 7 5 1275 0 0 180 180 13 7 13 281 281 259 259 270
19 4 5 1269 0 0 0 0 19 4 13 11 11 349 349 0
16 7 0 1269 0 0 180 180 16 7 0 270 270 270 270 270
10 4 10 1256 180 180 180 180 10 4 26 203 203 158 158 180

5 7 8 1241 0 180 0 180 5 7 21 11 11 349 349 0
0 4 0 1234 180 180 180 180 0 4 0 180 180 180 180 180

15 4 8 1216 0 180 180 0 15 4 21 101 101 79 79 90
10 12 0 1194 180 180 180 180 10 12 0 180 180 180 180 180

0 8 6 1181 180 180 180 180 0 8 16 0 0 0 0 0
21 4 2 1178 180 0 0 180 21 4 5 101 101 79 79 90

3 4 11 1169 0 0 0 0 3 4 29 191 191 169 169 180
5 7 2 1163 180 0 180 0 5 7 5 11 11 349 349 0
3 12 5 1162 180 180 180 180 3 12 13 191 191 169 169 180

11 8 2 1151 0 180 180 0 11 8 5 281 281 259 259 270
7 8 5 1126 0 0 0 0 7 8 13 11 11 349 349 0

18 0 7 1057 0 180 180 0 18 0 18 293 293 248 248 270
2 7 3 1038 0 180 0 180 2 7 8 0 0 0 0 0
0 14 0 1035 180 180 180 180 0 14 0 0 0 0 0 0
8 11 3 1010 180 0 180 0 8 11 8 180 180 180 180 180
7 0 11 998 180 180 180 180 7 0 29 11 11 349 349 0

10 0 0 973 0 0 0 0 10 0 0 0 0 0 0 0
15 4 2 970 180 0 0 180 15 4 5 101 101 79 79 90
10 11 0 961 180 180 0 0 10 11 0 90 90 90 90 90

3 11 5 959 180 180 0 0 3 11 13 101 101 79 79 90
22 0 0 955 180 180 180 180 22 0 0 180 180 180 180 180

8 4 7 952 180 0 0 180 8 4 18 113 113 68 68 90
19 12 5 903 0 0 0 0 19 12 13 11 11 349 349 0



not cmm and the only possible space group for "16 is

B2mm.

3.2. Deducing a structure model

Once the space group has been determined, we are ready to

deduce the structure model of "16 from the structure of "6

using the strong-reflections approach. The most important

condition for the strong-reflections approach is that the

intensity distribution of the strongest reflections between the

known and unknown structures should be similar. Thus, the

first step is to identify and relate the corresponding strong

reflections of "16 to those of "6 using electron diffraction. For

such a purpose, precession electron-diffraction patterns were

taken as shown in Fig. 3, since they are less dynamical and

show higher resolution (about 0.9 Å) than those of the SAED

patterns in Fig. 1. The less-dynamical diffraction intensities

obtained by precession electron

diffraction make the identification

of the corresponding strong

reflections easier. As can be seen

from the experimental precession

electron-diffraction patterns of "6

and "16 in Fig. 3, all the strong

reflections in "16 coincide with the

strong reflections in "6. Since the a

and b parameters are similar for

"16 and "6, and the c parameter of

"16 (32.4 Å) is about �2 times that

of "6 (12.3 Å, 32.4/12.3 = 2.634),

the (hkl) indices of the strong

reflections in these two approx-

imants are related by (h k l"16) =

(h k �2l"6). Here, the golden

number � = (1 + 51/2)/2 is asso-

ciated with fivefold rotational

symmetry of an icosahedral

quasicrystal. Elser et al. (Elser &

Henley, 1985) used the rational

ratio of two successive Fibonacci

numbers (1, 1, 2, 3, 5, 8, 13, 21,

. . . , Fn, . . . ; Fn = Fn � 1 + Fn � 2) as

an approximation to substitute for

the irrational � to obtain the

crystalline approximant of an

icosahedral quasicrystal.

According to the Fibonacci series,

(h k 8) in "16 is related to (h k 3) in

"6, (h k 10) in "16 is related to (h k

4) in "6, (h k 26) in "16 is related to

(h k 10) in "6, and so on.

To confirm the similarity of the

"16 and "6 structures, the R value

against the number of corre-

sponding strongest reflections was

plotted in Fig. 4 without any

corrections (such as absorption
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Figure 4
R values against the number of corresponding strongest reflections in "6

and "16. For the 30 strongest reflections, an R value of 0.19 shows good
correspondence for the strong reflections in "6 and "16. As more and more
moderately strong reflections are included, the R value increases,
reaching 0.29 for the 146 strongest reflections.

Figure 5
A three-dimensional electron-density map of "16 calculated from 1590 (256 independent) strong reflections
using the space group P1. (a), (b) and (c) are three-dimensional density maps viewed along the b, a and c
axes, respectively. Four unit cells are outlined in (a). The symmetry elements can be identified from the
density map, with mirrors perpendicular to the b and c axes (marked). The new origin is set on 2mm. The
origin shifts obtained from the electron-density maps are �x = 0, �y = 0.25 and �z = 0.15625. Banana-
shaped clusters and pentagonal clusters21 are outlined in (a).



correction, Lorenz correction and so on). The detailed

reflection lists are given as supporting information.1 The

reflections from different orientations were merged using their

common reflections. It shows that the intensities of the strong

corresponding reflections are very close to each other (R =

0.19) for the 30 strongest reflections. As more and more

moderately strong reflections are included, the R value

increases, reaching 0.29 for the 146 strongest reflections. This

kind of R value is close to a typical internal R value for

elctron-diffraction data obtained from different particles of

the same structure. Thus, we think there is obvious similarity

in the "16 and "6 structures. Note that here we only compared

the experimental strong reflections along the three main zone

axes, but they constitute a major part of all data. For the 256

strongest reflections (the 45 strongest of which are listed in

Table 2), the amplitudes along these three main zone axes sum

up to 45% of the total amplitudes in "6.

The strong reflections in "16 are then deduced from the

corresponding reflections in the known "6 according to the

relations described above. In order to determine the number

of independent strong reflections that are needed to obtain a

sufficiently good electron-density map, we first checked the

procedure on the "6 structure. Generally speaking, the struc-

ture-factor amplitude sum of the strong reflections must be

more than 50% of the total amplitude sum in order to

generate an electron-density map that represents the structure

(Zhang, He et al., 2006). Here we choose the 256 strongest

reflections of "6 among the total 2640 independent reflections

within 1.0 Å resolution. Table 2 lists 45 of them, together with

their structure-factor amplitudes and phases. The 256 reflec-

tions sum up to 57% of the total amplitude and they were

expanded to 1590 reflections according to the symmetry of "6.

A three-dimensional electron-density map was calculated

from the structure-factor amplitudes and phases of these 1590

reflections by inverse Fourier transformation, using the

program eMap (Oleynikov, 2006). All the atomic positions of

"6 as determined by single-crystal X-ray diffraction (Boudard

et al., 1996) could be found in the three-dimensional density
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Figure 6
The atomic structure of "16 (a) viewed along the c axis. Eight layers, including four flat layers (f) and four puckered layers (p), are stacked along the b axis.
Five independent layers are identified; at y = 0 (f1), � 0.125 (p1), 0.25 (f2), � 0.375 (p2) and 0.5 (f3). The structure can be described as f1p1f2p2f3p02f 02p01f1,
where p02f 02p01 are obtained from the layers p1f2p2 by a mirror symmetry at y = 0.5. (b)–(f) The five independent layers viewed along the b axis. Three basic
tilings: squashed hexagon (h), pentagonal star (s) and crown (c) are indicated in (d). A decagonal column (Dc) and a pentagonal column (Pc) are marked
in (b). A squashed octagon (o) is marked in (e). A pentagonal star (s) surrounded by five hexagonal columns is marked in (f).

1 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: DR5024). Services for accessing these data are described
at the back of the journal.



map. This indicates that the 256 strong reflections are suffi-

cient to obtain a correct structure model of "6. Since the strong

reflections in "16 coincide with the strong reflections in "6, a

reasonable structure model of "16 should be obtained using the

256 strong reflections of "16 deduced from those of "6.

The structure-factor amplitudes of "16 were assigned from

those of the corresponding reflections in "6, calculated from

the single-crystal X-ray structure model (Table 2). We did not

use the amplitudes from the experimental PED data since it

was difficult to collect a complete three-dimensional PED data

due to mixed phases in the same particle. A new technique,

called electron-diffraction tomography, is being developed in

our department (Zhang et al., 2010) and may be applied in the

future for collecting complete three-dimensional electron-

diffraction data. Our earlier studies have shown that the

amplitudes taken from the corresponding known approx-

imants are enough to deduce the structure model.

Different from our previous studies (Christensen et al.,

2004; Zhang, He et al., 2006; Zhang, Zou et al., 2006; He et al.,

2007), the structure-factor phases for the strong reflections of

"16 cannot be taken directly from those of "6, since the choice

of origin for the space group of "16 (B2mm) is different from

that of the space group for "6 (Pnma). Consequently, the phase

relations between the symmetry-related reflections in the two

space groups are different. For the space group Pnma, the

relations are (Table 2):

(i) If h + l = 2n and k = 2n

’hkl ¼ ’�hk�l ¼ ’h�kl ¼ ’�h�k�l ¼ ’hk�l ¼ ’�h�kl

¼ ’�hkl ¼ ’h�k�l ð’: structure�factor phaseÞ: ð1Þ

(ii) If h + l = 2n and k = 2n + 1:

’hkl ¼ ’hk�l ¼ ’�h�k�l ¼ ’�h�kl ¼ �þ ’h�k�l ¼ �þ ’h�kl

¼�þ ’�hkl ¼ �þ ’�hk�l: ð2Þ

(iii) If h + l = 2n + 1 and k = 2n:

’hkl ¼ ’h�kl ¼ ’�h�k�l ¼ ’�hk�l ¼ �þ ’hk�l ¼ �þ ’h�k�l

¼�þ ’�h�kl ¼ �þ ’�hkl: ð3Þ

(iv) If h + l = 2n + 1 and k = 2n +1:

’hkl ¼ ’h�k�l ¼ ’�h�k�l ¼ ’�hkl ¼ �þ ’hk�l ¼ �þ ’h�kl

¼�þ ’�h�kl ¼ �þ ’�hk�l: ð4Þ

For the space group B2mm, the relations are simpler

’hkl ¼ ’h�kl ¼ ’hk�l ¼ ’h�k�l ¼ �’�hkl ¼ �’�h�kl

¼ � ’�hk�l ¼ �’�h�k�l: ð5Þ

One way to overcome the problem of the different phase

relationships is to first assume the space group P1 for "16.

Starting from 256 strong reflections in "6, they are expanded

into 1590 reflections using Pnma symmetry. Based on the

strong-reflection approach, each of these strong reflections in

"6 structure has one corresponding reflection in the "16

structure in P1 symmetry with the same phases and amplitudes

but different indices [see Table 2, column Phase "6 (Pnma) and

"16 (P1)]. This "16 structure in P1 symmetry turns out to be

very close to B2mm symmetry. Note that although the phase

relations between the symmetry-related reflections in the two

space groups Pnma and B2mm are different, the phase rela-

tions for the strongest reflections in the two structures are

almost the same.

The three-dimensional electron-density map of "16 in P1

symmetry gives well resolved peaks that can be assigned to

atomic positions, as shown in Fig. 5. From the density map

viewed along the b axis (Fig. 5a), the banana-shaped tiles and

pentagonal tiles (Balanetskyy, Grushko & Velikanova, 2004)

can be identified. The two types of tiles are alternating along

the a and c directions and connected to each other. Similar

tiles and connections are observed in the [010] HRTEM image

in Fig. 2. The symmetries can be identified from the three-

dimensional electron-density map as follows: B-centering, 2 //

a, m? b, m? c, which agrees with the space group B2mm. An

origin that is compatible with the space group B2mm was

found at a 2mm Wyckoff position, (0, 0.25, 0.15625). Thus, the

origin was shifted to this position and the new structure-factor

phases were calculated using the following equation

’0ðhklÞ ¼ ’ðhklÞ þ 360� � ðh� 0þ k� 0:25þ l � 0:15625Þ:

ð6Þ

The new structure factor phases of 45 reflections from the

256 independent strong reflections are listed in Table 2,

together with the symmetry-imposed phases. The average

deviation of the phases from the symmetry B2mm is only 7.8�,

and the largest phase error is 22.5�. The amplitudes together

with the phases of the 256 reflections after imposing the

symmetry B2mm were used to calculate a new three-dimen-

sional electron-density map of "16. The three-dimensional

density map is very similar to that with P1 symmetry, but the

electron densities at symmetry-related positions become

exactly identical instead of just similar to each other.

There were 150 unique peaks corresponding to the atomic

positions of "16 identified from the three-dimensional density

map and the atomic coordinates were determined. There were

33 of them assigned as Rh, and the remaining 117 were Al. The

assignment of Rh positions was based on:

(i) the peak height (the highest peaks) and

(ii) chemical knowledge.

Since "16 and "6 are both members of the same series of

icosahedral quasicrystal approximants, they are expected to

have very similar local atomic structures. Atoms in similar

clusters should have a similar environment, and thus atoms in

"16 were assigned to form similar clusters as those in "6. In

addition, three Al atoms were added to complete the structure

based on the geometry and similarity to "6, see Table 3 in the

supplementary material. Most of the atoms have reasonable

distances to their neighbors, ranging from 2.2 to 3.1 Å. The

research papers

24 Mingrun Li et al. � Quasicrystal approximant "16 Acta Cryst. (2010). B66, 17–26



final composition of our "16 model is Al340Rh99, which fits the

synthesis stoichiometry (Al77Rh23) very well.

The precession electron-diffraction patterns simulated

using the derived "16 structure model (Figs. 3g–i) agree well

with the experimental precession electron-diffraction patterns

(Figs. 3d–f). A least-squares refinement was performed with

only four refined parameters (overall scale factor, extinction

parameters and isotropic atomic displacement parameters for

Rh and Al) using the experimental "16 intensities from PED

patterns (659 independent reflections within 1.0 Å resolution)

in the SHELXL program (Sheldrick, 2008). The refinement

converged with R1 = 0.33. Thus, the structure model deduced

for "16 from "6 can be taken as a good preliminary model.

3.3. Structure description

The final structure of "16 viewed along the c axis is shown in

Fig. 6(a). There are eight layers that are perpendicular to the b

axis in each unit cell, including four flat (f) and four puckered

(p) layers. Five of the layers, at y = 0 (f1), � 0.125 (p1), � 0.25

(f2),� 0.375 (p2) and 0.5 (f3), are independent (Figs. 6b–f). The

other three can be generated by a mirror located at y = 0.5.

The atoms within the f2 layer deviate slightly from y = 0.25.

Since this deviation is very small (< 0.019), f2 is still considered

as a flat layer. Therefore, the structure can be described as

f1p1f2p2f3p02f 02p01f1, where p02f20p
0
1 are related to the layers p1f2p2

by a mirror operation at y = 0.5. Each layer contains three

common basic tilings: a squashed hexagon (h), a pentagonal

star (s) and a crown (c) (marked in Fig. 6d). Two h tilings

together with one c tiling form a decagonal ring. Each s tiling is

surrounded by five inter-connected decagonal rings (marked

in Fig. 6f). An additional eight-ring tiling (o) is also found in

the layer f2 (marked in Fig. 6e).

The structure of "16 can be described using two types of

columns along the b axis: a decagonal column (Dc) and a

pentagonal column (Pc) (marked in Fig. 6b). The construction

of the decagonal and pentagonal columns is given in Fig. 7.

Each puckered layer contributes a decagonal ring to the

decagonal column. Between the decagonal rings are small

pentagons (in f1 and f3) and irregular tilings (in f2) that are

alternating along the b axis (Fig. 7a). The pentagonal column

is constructed by pentagonal stars or pentagons that are

stacked along the b axis (Fig. 7b). The centers of the decagonal

columns are always occupied by the heavy Rh atoms. The

decagonal columns are connected to each other through edge-

sharing (via two common atoms). Five decagonal columns

form a pentagonal tile with a pentagonal column inside (Fig.

6b). Nine decagonal columns form a banana-shaped tile with
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Figure 7
Two types of columns related to decagonal quasicrystals. (a) Side view of
the decagonal column. Each puckered layer contributes a decagonal ring
to the decagonal column. Between the decagonal rings are small
pentagons (in f1 and f3) and irregular subunits (in f2) that are alternating
along the b axis. (b) Side view of the pentagonal column. The pentagonal
column is constructed by pentagonal stars or pentagons that are stacked
along the b axis. The centers of the decagonal columns are always
occupied by the heavy Rh atoms.

Figure 8
The construction of "6 and "16 from the decagonal columns (Dc) and
pentagonal columns (Pc) running along the b axis. The structure of "6 is
constructed by only one type of hexagonal tiles (outlined) built from six
decagonal columns with two intersecting pentagonal columns inside. The
structure of "16 is constructed by two types of tiles alternating along the a
and c axes (outlined): a banana-shaped tile and a pentagonal tile.



two pairs of intersecting pentagonal columns inside. The

banana-shaped and pentagonal tiles are seen in the HRTEM

images (see Fig. 2). Similar decagonal and pentagonal columns

have also been observed in the decagonal quasicrystal d-Al–

Pd (Li et al., 1996).

A comparison of the structure features of "6 and "16 is given

in Fig. 8. Both structures can be described by the decagonal

and pentagonal columns. All decagonal columns in "6 and "16

are connected by edge-sharing. The structure of "6 is

constructed by only one type of hexagonal tile built from six

decagonal columns with two intersecting pentagonal columns

inside. The structure of "16 is constructed by two types of tiles:

a banana-shaped tile and a pentagonal tile. The diameter of

decagonal and pentagonal columns is about 7.6 Å in both

structures. This is also the edge length (marked by thick lines

in Fig. 8) of the different tiles. We designate this edge length as

‘S’, as the short distance in a Fibonacci series as found in

quasicrystal structures. The diagonal distance of the penta-

gonal tile is � times longer than S, and thus defined as ‘L’. As

shown in Fig. 8, the c parameters can be given by S and L as

follows: "6: c = L = �S ’ 12.3 Å; "16: c = S + L + L ’ 32.2 Å.

Consequently the c parameters for the other approximants in

the series are: "22: c = S + L + L + L’ 44.5 Å; "28: c = S + L + L

+ L + L’ 56.8 Å. They are related by 1: (1 + �): (2 + �): (3 + �).

We expect that it will be possible to obtain the structures of

the complete " series and describe them using the stacks of

decagonal and pentagonal columns. Furthermore, a detailed

structure model of the decagonal quasicrystal (d-Al–TM) can

possibly be deduced from these common features.

4. Conclusion

A series of approximants of quasicrystals are expected to be

built from similar atomic clusters, resulting in similar intensity

distributions of reflections in reciprocal space. The similarity

of the intensity distributions leads to similar structure-factor

amplitudes and phases of the related reflections, especially for

the strongest reflections. Based on this knowledge, the struc-

ture-factor amplitudes and phases of an unknown structure

can be deduced from those of a related known structure. A

structure model can be deduced from the three-dimensional

electron-density map obtained by inverse Fourier transfor-

mation of the structure factors. Such a case was demonstrated

here successfully on the complex and unknown structure of "16

based on the related known structure of "6. The derived

structure model agrees well with the experimental precession

electron-diffraction patterns and high-resolution transmission

electron microscopy images. The structure of "16 with 153

unique atoms within the unit cell is the most complex quasi-

crystal approximant predicted or solved so far. The strong-

reflections approach has once again proven to be an effective

method for predicting and solving unknown quasicrystal

approximants.

This study was supported by the Swedish Research Council
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He, Z. B., Zou, X. D., Hovmöller, S., Oleynikov, P. & Kuo, K. H.

(2007). Ultramicroscopy, 107, 495–500.
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Zou, X. D. & Hovmöller, S. (2008). Acta Cryst. A64, 149–160.
Zou, X. D., Mo, Z. M., Hovmöller, S., Li, X. Z. & Kuo, K. H. (2003).

Acta Cryst. A59, 526–539.
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