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Abstract

Theory and algorithms have been developed for performing kinematical and dynamical two-beam and multibeam dynamical

simulations of precession electron diffraction patterns. Intensities in experimental precession patterns have been quantified and are

shown to be less dynamical.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Electron crystallography emerges as a new tool for
accurate structure determination of very small crystals. In
order to exploit the full potential of electron diffraction,
the methods for data acquisition and processing have to be
developed towards the high standards of X-ray crystal-
lography. Spot diffraction patterns give complete separa-
tion of reflections and provide two- or three-dimensional
data sets.

One main goal of electron crystallography is to
determine atomic structures quantitatively. Electron dif-
fraction as a method of structure analysis has its own
special possibilities and advantages in comparison with X-
ray diffraction. Simultaneously, X-ray powder diffraction
has gained in popularity partly because of the big
transformation of the method as a consequence of several
important developments. This is often possible because of
the power and availability of computers.

Vincent and Midgley at the University of Bristol
developed the precession technique in 1994. It has recently
become more available to the TEM users because of
hardware implementations. Precession allows data acquisi-
tion of sufficient quality for structure determination.
Dynamical interactions can be effectively reduced (see for
example Refs. [1–3]) using the precession method, and the
e front matter r 2007 Elsevier B.V. All rights reserved.
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intensity data can be treated at first steps within the
kinematical approximation in order to get a structure
model by direct methods for example. An analysis of
Lorentz corrections in precession diffraction have been
previously published by Gjonnes [4], and the role of
dynamical diffraction effects in precession via a Blackman
model with Bethe potential corrections has been given by
Gjonnes et al. [5]. The use of multislice to simulate
precession diffraction intensities, the various different
Lorentz correction terms, the effects of breakdowns of
the Blackman approximation, how the results depend upon
the scattering angle and the differences between kinema-
tical, two-beam and multislice results including R-factor
analyses are discussed in the Ph.D. thesis of Own [6], see
also Own et al. [7] and the references therein for further
details. However, a deeper understanding of the theory is
necessary.

2. Precession electron diffraction

In the condition with precessing electron beam, the
incident beam, which can be parallel or convergent, is tilted
away from the zone axis to some angle. This angle is called
precession angle and is typically 1–31. In case of 11
precession inclination, the reciprocal resolution of the
outermost reciprocal points within the zero-order Laue
zone (ZOLZ) will be around 0.5 Å (Fig. 1a–c).
For any tilted beam configuration, the diffracted beams

will form an off-axis diffraction pattern shifted away from
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Fig. 1. Simulated kinematical electron diffraction patterns at 200 kV

[0 0 1] zone axis of the mineral uvarovite (cubic, a ¼ b ¼ c ¼ 12.0065(1) Å,

Ia3d, thickness t ¼ 100 Å): (a) normal selected area; (b) precession at 0.61

and (c) precession at 11 electron diffraction patterns. Forbidden reflections

are absent. Although the FOLZ (h k 1) and SOLZ (h k 2) interpenetrate at

this precession angle, the diffraction spots do not overlap due to the

systematic absences h+k+l ¼ 2n+1.
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the non-tilted beam configuration. Thus, the diffraction
pattern will oscillate during precession. It is necessary to
de-scan the diffracted beams in a complementary way so
that the spots will be in the same positions on the resulting
pattern as on a zone-axis diffraction pattern.
The following aspects of precession electron diffraction

patterns can be emphasised:
�
 the resolution is higher than in conventional electron
diffraction. This allows collection of more reflections in
the ZOLZ and in the high-order Laue zones (HOLZs);

�
 HOLZ reflections can be illuminated which allows

collection of larger 3D data sets;

�
 the dynamical effects are reduced due to the off-axis

beam inclinations because less beams are simultaneously
excited;

�
 indexing of a precession diffraction pattern can be

performed in the usual way;

�
 there is no need for perfect zone orientation during

recording of a precession pattern. Quite symmetrical
precession patterns are obtained also for off-zone
orientation tilted by less than 11;

�
 precession electron diffraction patterns contain inte-

grated intensities of the reflections.

Several problems arise during processing precession
diffraction patterns. They include:
�
 overlaps between Laue zones are possible for high
precession angles;

�
 Lorentz correction factors must be applied to the

extracted intensities in order to obtain accurate structure
factor amplitudes;

�
 there are no available software packages which take into

account all aspects of precession diffraction patterns for
indexing and symmetry determination using the infor-
mation from HOLZ patterns;

�
 simulation of geometry for precession diffraction

patterns is often required. There are three such
programs available today: JECP/ED (Java-based, free,
[8]), ELECTRON DIFFRACTION (commercial, J.P.
Morniroli [9]) and JEMS (Java-based, commercial, [10]).
JEMS can also calculate the intensities [11].

2.1. Precession simulation

One purpose of precession simulation is to help
estimating the best conditions for the experiments,
especially in cases when an overlap of first-order Laue
zone (FOLZ) with ZOLZ is possible. Among other
purposes, the following can be emphasized:
�
 the estimation of intensities, especially the intensities of
forbidden reflections;

�
 the calculation of intensities of diffracted beams as

accurately as possible.
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Some requirements of precession geometry calculations
are:
�

Fig

is t

bet
the simulation must be able to calculate the visibility of
reflections in each layer of the reciprocal lattice;

�
 the simulation must take the excitation error into

account, in order to include all reflections that can
possibly be visible on the experimental precession
pattern;

�
 the geometry simulation part must provide the possibi-

lity to change the precession angle in run time in order
to see changes in the simulated precession pattern;

�
 the intensities simulation part must include the geometry

correction factors for the pure kinematical scattering, in
order to obtain the intensities of the kinematical
precession electron diffraction pattern;

�
 the dynamical (multislice) calculation part could be used

for the estimation of observed intensities, especially of
forbidden or strong reflections;

�
 the simulation must produce a pattern for any specified

zone axis.

All these requirements were carefully analysed and then
implemented in the eMap software package [12]. A detailed
theoretical description of the models used in the simula-
tions is presented below.

2.1.1. Simulation of precession diffraction patterns

In the conventional SAED mode, the HOLZ can be
observed as thin rings of reflections (see Fig. 1a). The
number of reflections on these rings depends mainly on the
crystal thickness. During precession, when a zone axis is
aligned to be parallel to the optical axis of the electron
microscope, the zero layer expands into a circular area and
the HOLZ reflection rings become annuli (see Ref. [1] and
Fig. 1b–c). This expansion depends on the precession angle
j. In case of large real space unit cell (short distances
between reciprocal layers with unit cell dimensions X10 Å)
overlapping of Laue zones can occur. For example, in the
case of uvarovite (cubic, a ¼ b ¼ c ¼ 12.0065(1)Å, Ia3d)
the second-order Laue zone (SOLZ) comes very close to
the FOLZ already at 0.61 precession angle (see Fig. 1b). At
. 2. The precession geometry for intersections of the Ewald sphere with recip

he origin; R0,out is the radius of the ZOLZ circular patch; R1,in and R1,out are

ween reciprocal layers l ¼ 0 and 1; sg is the excitation error for the g reflec
11 precession angle, the FOLZ is very close to the ZOLZ
while the SOLZ and FOLZ penetrate into each other (see
Fig. 1c).
The differences in periodicities and shifts between

reflections in ZOLZ and HOLZ are very easy to detect
on these patterns and they can be used to identify the
Bravais lattice and the presence or absence of glide planes
as described in Ref. [13].
The geometry defining inner and outer radii, Rn,in and

Rn,out respectively, for reflections in the layer n of the
reciprocal lattice is shown in Fig. 2. The overlapping
problem becomes more severe with lower accelerating
voltage and with larger unit cell dimension along the
electron beam. Notice how the number of recorded
diffraction spots increase with precession angle. At 40.61
precession the FOLZ (h k 1) and SOLZ (h k 2) will
interpenetrate. At 41.01 also the ZOLZ (h k 0) and FOLZ
(h k 1) will interpenetrate.
The Laue circles rotate around the zone axis making

rings with radii defined

Rn;in=out ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � ðKZ � nDÞ2

q
� K sin j, (1)

where K is the amplitude of the wave-vector K, KZ is the
projection of K on the vertical z-axis.
In case of n ¼ 0 we obtain R0,in ¼ 0 and R0,out-

2K sin(j) as expected for the ZOLZ. Eq. (1) does not take
into account the finite size of the reciprocal nodes, which
are elongated in the direction perpendicular to the
reciprocal lattice layers. There will be additional reflections
visible in each Laue zone due to the finite values of the
excitation error sg, which will extend each annulus.
2.1.2. Precession intensities

The integrated intensities of reflections on a precession
diffraction pattern are distorted due to geometrical reasons
and crystal thickness. The effect of intensities distortion
can be explained by the different ways the Ewald sphere in
reciprocal space sweeps through each reflection. The low-
angle reflections spend more time close to Bragg conditions
than the high-angle reflections. The Ewald sphere sweeps
rocal lattice layers for a beam incident with the zone axis at the angle j. O

inner and outer radii respectively for the FOLZ annulus; D is the distance

tion.
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through each reflection twice during a full 3601 cycle; each
time providing integration over the reflection.

2.1.2.1. Two-beam kinematical approach. The use of two-
beam approach requires the knowledge of the structure
factors for the given structure, because it is included in Eq.
(3) for the extinction distance. The diffracted intensity in
terms of kinematical theory in the two-beam case can be
expressed by the following equation (see Refs. [14,15]):

Iking ¼ I
sinðpsgtÞ

xgsg

� �2

, (2)

where

xg ¼
pO cos yB

lFg

(3)

with xg known as the extinction distance, yB is the Bragg
angle for the reflection g, O is the volume of the unit cell, l
is the electron wavelength, t is the specimen thickness, sg is
the excitation error and Fg is the structure factor for the
reflection g.

The first zero occurs at sg ¼ 1/t, and it defines the length
of the reciprocal lattice points. These points are, in fact,
extended into relrods of length 2/t perpendicular to the foil
(see Fig. 4).

The integrated intensity of any reflection g on the
precession diffraction pattern can be expressed by the
following integral:

Iprecg ¼

Z
Iking ðsgÞdsg: (4)

Eq. (4) represents the integral of the kinematically scattered
intensity over the excitation error sg. The excitation error
depends on the position of the Ewald sphere during
Fig. 3. The azimuthal position o of the Laue circle during precession. O is

the lattice origin.
precession. In order to express this dependence, the Ewald
sphere centre can be represented by

Kz ¼ K cos j,

Kxy ¼ K sin j, ð5Þ

where Kxy is a projection of the wave vector K on the xy

plane. Using the current azimuthal position o of the Laue
circle (see Fig. 3), we can express Kxy as Kx and Ky

components

Kx ¼ Kxy cos o,

Ky ¼ Kxy sin o. ð6Þ

The final equation, which expresses the dependence of
the excitation error on the current Ewald sphere position, is

j � K þ gþ nsgj ¼ K , (7)

where n is the surface normal. Solving (7) for sg we get the
dependence of the excitation error on the current position
o on the Laue circle

sgðoÞ ¼ Kz � gz �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKz � gzÞ

2
þ 2KðoÞg� g2

q
, (8)

where gz is the z-component of the vector g.
In the assumption that KzEK and g5K, we can expand

the square root into a series, which will reduce (8) to the
well-known equation for the excitation error (see Ref. [14]):

sg ¼
g2 � 2Kg

2K
(9)

and then simplified to

sg ¼
g2

2K
� ½gxyj cosða� oÞ þ gz�. (10)

The last equation is a very good approximation for the
excitation error for any given g vector and small precession
angles (up to 3–41). It is valid for HOLZ as well as for
ZOLZ. This equation can be used in calculations of the
correction factor for the integrated intensities.
In order to visualize Eq. (8), we can take a look at an

artificial example with a periodicity along the a*-axis of
0.2 Å�1 in reciprocal space. Let us consider the precession
angle j ¼ 31 and the accelerating voltage Ea ¼ 200 kV. The
dependence of the excitation error sg for a reflection
g ¼ 4 0 0 on the angle o is shown in Fig. 5a.
Finally, the integrated intensity of the spot g can be

expressed as the integral over the angle o as follows:

Iprecg ¼

Z 2p

0

Iking ðsgðoÞÞdo, (11)

Iprecg ¼ I

Z 2p

0

oscillðsgðoÞÞdo ¼ IAcorr, (12)

where oscill is the oscillation function ðsinðpsgtÞ=psgtÞ2 (see
Fig. 4).
The dependence of the intensity of the reflection g ¼ 4 0 0

on the position of the precessing beam is shown in Fig. 5b.
The correction coefficient can be calculated for each
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Fig. 4. The intensity oscillation function sinðpsgtÞ=psgt
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for a foil of thickness t ¼ 100 Å.
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Fig. 5. (a) The dependence of the excitation error sg for a reflection g ¼ 400 on the angle o; (b) the dependence of the intensity oscillation function on the

angle o for a foil of thickness t ¼ 100 Å.
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reflection g. The values of correction coefficient Acorr for a
row of reflections from g ¼ 100 up to g ¼ 3000 is shown in
Fig. 6.
The precession geometry is quite complicated, which
results inter alia in an increase of observed intensities for
reflections at the outer radius of the precession pattern, as
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Fig. 6. The correction coefficient Acorr values for the row of h00 reflections

for a 100 Å thickness.
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shown in Fig. 6. The spots with h-indices 1–4 lie very close
to the Ewald sphere at all beam tilts, which explains high
values of Acorr close to the origin.

The local maximum of Acorr near the 21st h-index can be
explained using the value RL of the Laue circle radius for
the current precession configuration (j ¼ 31, Ea ¼ 200 kV,
a* ¼ 0.2 Å�1), which is 2.093 Å�1. The 21st reflection has
jgj ¼ 4.2 Å�1 and lies very close to the value of 2RL which
is the diameter of the Laue circle (same as R0,out in Fig. 2).
Thus the reflection 2 1 0 0 spends more time close to the
Ewald sphere than its neighbours during precession.

2.1.2.2. Two-beam dynamical approach. Introducing the
effective excitation error for the two-beam dynamical
theory (see Ref. [16])

sg;eff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2g þ

1

x2g

s
, (13)

we can calculate Acorr values for the two-beam case, which
assumes that only one beam other than the incident is
strongly excited. The profile of I2�beamg depends on the
extinction distance and can show several maxima (xg5t) as
well as a single.

2.1.2.3. Many-beam approach. Many-beam dynamical
theory extends the two-beam theory and requires a
computer for their solution. The solution of the many-
beam theory eigenvalue equation, the so-called secular
equation, will provide eigenvalues and eigenvectors, which
completely specify the diffracted beam amplitudes for a
crystal at any given thickness t.

Another approach to obtain the dynamical amplitudes
for diffracted beams at a given thickness is the multislice
method.

In both cases, when simulating precession, the calcula-
tions must proceed with many incident beam tilts, which
will cover the full circle. This can be a time-consuming
process due to the extension of dimensions in reciprocal
plane, which must include more beams to a very high
resolution, especially for high precession angles. The total
time can be estimated as Ntilts �Nslices (tFFT+tIFFT), where
Ntilts is the total number of beam tilts in the precession
simulation, Nslices is the total number of slices to be
calculated for the given thickness, tFFT and tIFFT are the
times needed to calculate Fast Fourier Transform (FFT)
and Inverse FFT, respectively. Obviously, the total time
will be Ntilts times longer than it is required for the
conventional multislice method.

2.1.3. R-factors

In order to reach reasonable R-factor values one can use
a structure refinement method, which will take the
dynamical scattering into account. There are two methods
developed for the simulation of electron diffraction
intensities from dynamically scattering samples: Bloch
waves [17,18] and multislice methods [19]. There are only
two programs MSLS [20] and NUMIS [21] available for
the refinement of dynamical intensities, which use the
multislice (or so-called image-based) approach.
All beams in experimental selected-area electron diffrac-

tion patterns are affected by thickness and orientation.
Unfortunately, these may vary in a complicated non-linear
way across the illuminated specimen in SAED and in
precession, because the illuminated area is typically
420 nm. The experimental data quite often do not match
too well with simulated patterns calculated assuming one
average experimental thickness and orientation.
Electron diffraction data collected with precession will

be less affected by dynamical effects. It is hoped that this
will make it possible to reach lower R-values, i.e. better
correspondence between observed and calculated intensi-
ties. Today R-values for electrons are at the 15–20% level
[22] but we would like to reach 5–10% as in X-ray
crystallography.

3. Applications: simulation of precession electron diffraction

patterns

The quality of simulated precession patterns was
evaluated by comparison with experimental data. Preces-
sion patterns were calculated using the multislice method in
order to take the dynamical interactions into account. The
experimental precession electron diffraction pattern was
taken from Cs0.44Nb2.54W2.46O14 with the space group
Pbam and unit cell parameters a ¼ 27.145(2) Å,
b ¼ 21.603(2) Å and c ¼ 3.9463(3) Å [23,24].

3.1. Experiment

An experimental precession pattern was taken near the
[0 0 1] zone axis of Cs0.44Nb2.54W2.46O14 by Joaquim
Portillo on a Philips EM400 TEM operated at 100 kV
equipped with the commercial precession system CASTEL/
SPINNING STAR (NanoMegas Company). The pattern
was recorded on DITABIS imaging plates, having high
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Fig. 7. Electron diffraction patterns of Cs0.44Nb2.54W2.46O14: (a) experi-

mental precession, (b) the experimental SAED (courtesy J. Portillo and
˚
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dynamical range (16-bit greyscale). The precession angle
was 2.731 (47.6mrad). No HOLZ reflections were observed
during the experiment.

3.2. Simulation

Precession electron diffraction patterns were simulated
for the [0 0 1] projection using the multislice method [19]
implemented in the eMap programme. The atomic
coordinates used were those given in Ref. [24]. Isotropic
atomic displacement parameters U of 0.05 Å2 and 0.07 Å2

were assigned to metal and oxygen atoms, respectively.
Twenty-eight precession patterns were simulated with

thicknesses from 60 up to 600 Å with steps of 20 Å. Each
simulated precession pattern was calculated as a sum of 250
diffraction patterns, i.e. with azimuthal steps 1.441 apart
around a full circle. The resolution of the simulation was
0.11 Å to take into account multiple diffraction from high-
g beams back into the central beams.

Simulated intensities were compared with the experi-
mental precession pattern. The experimental intensities Ihkl

of reflections were estimated using the ELD programme
[25,26]. The intensities were merged according to the p2gg
plane group resulting in 683 unique hk0 reflections within a
resolution of 1.0 Å. 43 axial h00 and 0k0 reflections were
kinematically forbidden, but due to the dynamical scatter-
ing they had small but finite intensities (see Figs. 7 and 8).
The internal R-factor of symmetry-related reflections in the
merged experimental data set was 13.9%. Experimental
and simulated precession electron diffraction patterns are
shown in Fig. 7.

3.3. Effects of precession on rows of forbidden reflections

Three different beam tilts during the precession are
shown in Fig. 8. While the systematically forbidden
reflections (h ¼ 2n+1) along the h00 line are really absent
in Fig. 8a and b with 01 beam azimuth, intensity can be
seen in some of the forbidden reflections along 0k0. The
finite intensities of 050 and 090 reflections are due to
multiple scattering. The opposite situation can be seen at
the 901 beam azimuth position (the beam is tilted along 0k0
direction) as shown in Fig. 8c and d. Here the reflections
300, 500, etc. along the h00 line have finite intensities, while
the reflections with k ¼ odd in the 0k0 row are now absent.
This behaviour can be explained as follows. The 0k0
(k ¼ odd) reflections are kinematically forbidden owing to
a b-glide perpendicular to the a-axis. The following
relations exist between the crystal structure factors:

F ðh k 0Þ ¼ F ðh̄ k 0Þ for k ¼ 2n ðevenÞ,

F ðh k 0Þ ¼ �F ðh̄ k 0Þ for k ¼ 2nþ 1 ðoddÞ.

When the centre of the Laue circle lies on the axis k, all
possible paths of waves which end in any kinematically
forbidden reflection on this axis will have the same but
‘‘mirrored’’ path with a wave of exactly the same amplitude
T.E. Weirich) and (c) simulated precession at 200A thickness.
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Fig. 8. Three different beam tilts during precession with the angle of 2.731. The tilts are: (a) along the h-axis (azimuth 01); (c) along the k-axis (azimuth

901); (e) in a diagonal direction (azimuth 451). (b), (d) and (f) central parts enlarged. Some forbidden axial reflections have some intensity due to dynamical

scattering, such as 050 and 090 in (b).
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but opposite sign and thus they cancel each other. A similar
situation is for a Laue centre, which lies on the h axis when
there are forbidden reflections h00, h ¼ odd.

The situation shown in Fig. 8e and f is different from
both cases of perfect beam tilts along either h00 or 0k0
main axes. A precession pattern is the sum of patterns with
the beam tilt (azimuth) going around the full circle from 01
to 3601. In most of these directions systematically
forbidden axial reflections will get some intensity. Thus
the kinematical rules are not valid and both main axes lines
show some intensity of kinematically forbidden reflections.
In case of Cs0.44Nb2.54W2.46O14, the experimental pre-

cession diffraction pattern shows quite strong intensities of
kinematically forbidden reflections along h00 and 0k0 rows
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while the same reflections are very weak on the SAED
pattern. This behaviour can be explained by the discourse
made above. Among all possible Laue point positions,
there are only four incident beam positions (two for each of
the main axes directions) where dynamical interactions do
not affect kinematically forbidden reflections. All other
beam tilts will give rise to forbidden reflections. Due to the
integration over the excitation error during the precession
experiment, these forbidden reflections can be strongly
influenced by dynamical scattering. In case of close spacing
of reciprocal points, this effect can be even more
pronounced than in an SAED pattern. A perfectly aligned
SAED pattern should not have any intensity in forbidden
axial reflections according to the argument above. This
situation can be observed as Gjønnes–Moodie lines (see
Ref. [27]) present in the forbidden reflections when the
incident beam is parallel to a glide plane or perpendicular
to a screw axis in CBED experiment. In practice, it is not
possible to achieve perfect conditions for the SAED
pattern, such as perfect alignment and perfect crystal
shape, etc., and thus there will always be some intensity in
those forbidden reflections. However, this is not the case
when the unit cell parameters are small (for example,
5.43 Å as in pure silicon, as noticed in Ref. [24]), which
leads to large spacing between reciprocal points and as a
result the kinematically forbidden reflections will rise much
less in precession patterns.

3.4. Effects of precession for general reflections

On the other hand, dynamical scattering effects are in
general significantly reduced for general reflections, such as
hk0 with both h 6¼0 and k6¼0. This can be explained if we
take a look at the total number of beams, which are close
to Bragg condition simultaneously at every Laue circle
position during the precession. The total number of
possible paths, due to double scattering, is reduced
significantly in case of precession. In summary, dynamical
scattering effects have less influence on the integrated
intensities of most reflections in precession than in SAED
patterns. The relatively poor performance on system-
atically forbidden axial reflections, as discussed in Section



ARTICLE IN PRESS
P. Oleynikov et al. / Ultramicroscopy 107 (2007) 523–533532
3.3, is not very serious; if the odd reflections are much
weaker than the even ones, we can still identify the
symmetry element (2, screw axis and glide planes).
Forbidden reflections are then eliminated in the calcula-
tions.

3.5. Quantification

The intensities obtained from simulated SAED and
precession patterns (Fig. 7c) were compared to the
experimental SAED (Fig. 7b) and precession patterns
(Fig. 7a), using both RF and RB.

RF is defined as

RF ¼

P
kjjF k;obsj � jF k;calcjjP

kjFk;obsj
(14)

and RB

RB ¼

P
k Ik;obs � Ik;calc

�� ��P
kIk;obs

(15)

As usual in electron diffraction, the exact thickness range
of the specimen is not known. Thus precession patterns
were simulated for a large range of thicknesses. RB and RF

were calculated for each thickness as shown in Fig. 9a for
the precession simulation. These factors are calculated
without any refinement using the model obtained from the
Rietveld refinement of X-ray powder diffraction pattern
[24]. The R-factors have a clear flat minimum, which lies
within a very broad range of thicknesses from 300 up to
580 Å. If there is a possibility to use CBED or EELS
methods then it can be possible to have an idea of the
thickness, which will reduce the total number of multislice
simulations.

4. Conclusion—do precession patterns give better intensities

than SAED?

The RF factor for multislice precession simulation was
much better (i.e. smaller) than the RF factor for multislice
SAED (see Fig. 9b).

After the LS refinement the RF factor reported in Ref.
[24] was 39.2%. In case of multislice SAED, both the
thickness and beam tilt were varied. It should be noted that
there was no refinement of any structural parameters
during these simulations. The estimated crystal tilt position
was h ¼ 2, k ¼ �3 (see Fig. 9c). SAED patterns were then
simulated at this tilt, with thicknesses ranging from 50 to
600 Å. The lowest RF value was 52% at t ¼ 240 Å.

The RF factor for the pure kinematical precession
simulation data was 25%, which is almost as good as the
minimum value of 24.3% for the multislice precession
simulation. Thus intensities in precession electron diffrac-
tion patterns are less dynamical than are intensities in
SAED patterns. We may expect that the RF value of the
precession patterns may drop further with a structure
refinement taking dynamical effects into account.
This behaviour is as expected, but the fact that we do not
get down under 20% R-value even when doing multislice
simulations, shows that there are still some factors that are
not completely understood or under control. These may
include effects of crystal thickness variation of the selected
area, slight misalignments of the crystal, the fact that the
inelastically scattered electrons are not included in the
calculations, errors in electron scattering factor tables (may
be 710%), unclear scattering factors of charged atoms
(especially the negatively charged oxygen atoms), errors in
data acquisition (overflow of strongest reflections) and
errors in data extraction by ELD, etc. But all taken
together, we can say that these results are quite good,
considering that electron crystallography is newer and less
developed than X-ray crystallography and that the electron
scattering is so much stronger (and thus more complicated)
than X-ray scattering. New hardware (including the
precession technique and CCD and imaging plate detec-
tors) and software developed as part of this work provide
tools for electron crystallography. These will facilitate
further work towards a better understanding of the theory
of electron scattering and improved practical procedures,
leading to more exact results in electron crystallography in
the near feature.
In this work we used a structure with relatively large unit

cell parameters a and b. It would be interesting to see the
behaviour of calculated intensities in precession geometry
using multislice simulation for smaller unit cells. In our
further work we will use the precession simulations and
compare with experimental data for other structures,
including some that have small unit cell parameters.
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