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To distinguish between cases A and B the following experi- 
ment was performed. The crystal was aligned to measure the 
primary reflection with the counter set at the proper angle to 
monitor the primary intensity. The idea is then that if the 
situation conforms to case B (Bragg-Bragg) the secondary 
reflection could be measured on the same side of the crystal 
as the incident beam, while if it is in case A (Bragg-Laue) the 
secondary reflection would be eventually detected on the 
other side of the crystal. 

In a given experiment, the intensity of the primary 
reflection around the azimuth 28.212 °, corresponding to the 
secondary reflection l f l  or 133 depending on whether case 
A or B was being produced, was measured. In order to 
distinguish between the two cases the detector was moved to 
that position on the same side of the crystal where reflection 
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133 would appear in the Bragg-Bragg case (B). That this 
was actually the case is demonstrated by the intensities 
recorded in both measurements, shown in Fig. 2. 

Once the Bragg-Bragg case has been identified the corre- 
sponding umweg peak in the Renninger diagram is attributed 
the indices 133, then the other multiple diffraction peaks can 
be indexed without ambiguity. 

The method can be applied whenever there exist a couple 
of corresponding dynamical situations, involving two three- 
beam cases, one of the Bragg-Bragg and the other of Bragg- 
Laue type, where the secondary and the coupling reflections 
are interchanged. In the case of cubic structures we have 
actually proved that any pair of reflections 60 ° away in the 
Renninger diagram satisfy this exigence. In conclusion, we 
have thus been able to distinguish between two situations 
which are dynamically equivalent, thus producing the same 
intensity measurement, on the basis of diffraction geometry. 

It is observed that the method makes a clear distinction 
between the two directions [110] and [0i 1] which served to 
mark the origins of the Renninger diagram. Since any of 
them is transformed by the threefold axis into the opposite 
of the other, this implies that by using this method one is able 
to distinguish between the direction [1 i0], and its opposite 
[ i 10] without recourse to anomalous dispersion. 

Finally, it is worth while to point out that the method just 
discussed does not provide a general way to distinguish 
among equivalent reflections. In fact, since germanium 
belongs to the centrosymmetric space group Fd3m, it is 
impossible to distinguish between the direction [222] and its 
opposite [22:2]; moreover, the distinction would not make 
any sense from a physical point of view since the structure 
looks exactly alike from both directions and the X-ray 
diffracted intensities are exactly the same, as they would be 
for any centrosymmetric crystal. 

However, after choosing the indices of the primary 
reflection, and because of the peculiarities of the diffraction 
geometry, some particular opposite directions in the struc- 
ture can be distinguished, as has been shown above in the 
case of [ 1 i0] and [ 110]. 

Fig. 2. The recorded intensities of the primary (222) reflection and 
of the secondary (133) reflection in the ease of 
(000,222,133/1 i i) (Cu Kay). 
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Errors in the tables given by Hauptman & Karle [Acta Cryst. (1956), 9, 45-55] are corrected. 

The number of reflections needed to fix the origin in the 
space groups P312, P3112, P3212, P6, P6m2 and P6c2 is 1, 
not 2 as stated by Hauptman & Karle (1956), Giacovazzo 
(1974) and by Karle (1974) in International Tables for X- 
ray Crystallography. The seminvariant vector in these space 

groups is (2h + 4k + 3/) and the seminvariant modulus is 6. 
This is equivalent to the pair of congruences (h - k) - 0 
(mod 3) and (/) - 0 (mod 2). Since in all other space groups 
the number of elements in the seminvariant vector is equal to 
the number of reflections needed to fix the origin, it is 
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preferred to express the seminvariant as (2h + 4k + 3/) 
rather than (h - k,/). 

The 6 equivalent origins are correctly given as (0,0,0), 
( 0 , 0 , 9 ,  ~ 2  ~ 1 2 ~  2 ~  , 2 ~  (~,~,0), It if ~,~,p, (g,~,0) and looks as one I,~, ~', ~./. 

needed to specify the origin in two directions, i.e. along the z 
axis and in the xy plane. However, it is only necessary to 
specify the origin in one direction, along the line passing 
through (0,0,0) and (~, ~, ½). All the six permissible origins lie 
on this line since they are generated by the successive 
addition of (], ], ½) to (0, 0, 0). The origin is uniquely specified 
through the fixation of the phase of one reflection which will 
take on different phase values in the six permissible origins, 
each differing by 2z~/6. 

The only reflections which do not take on different values 
in the six permissible origins are those which have (2h + 4k 
+ 3/) = n6. This proves the seminvariant vector to be (2h + 
4k + 3/) and the seminvariant modulus to be 6. 

In the tables given by Hauptman & Karle (1956) and 
Karle (1974) the type should be 3P6, not 3P32. In the 
notation of Giacovazzo (1974)the H - K  group is (2h + 4k + 
3/)P6. In all tables the seminvariant phases should be tPhk t 
where  (2h + 4k + 3/) =- 6. The permitted values for semi- 
independent phases are 116 II, except for 112 II for h + 2k = n3 
and 11311 for l even. The number of phases linearly semi- 
independent to be specified is 1. 
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A method is discussed for obtaining the best proper rotation to relate two sets of vectors. 

The simple procedure for obtaining the best rotation to relate 
two sets of vectors described in an earlier paper (Kabsch, 
1976) has been used in processing oscillation films (Kabsch, 
1977), for the determination of non-crystallographic sym- 
metry elements (Kabsch, Gast, Schulz & Leberman, 1977), 
and for a comparison of macromolecules. In the last 
application an improper rotation was sometimes obtained 
from the procedure (Nyburg & Yuen, 1977). The purpose of 
this communication is to show how a best proper rotation 
can always be obtained from the procedure. 

Let x, and y,  (n = 1 . . . . .  N) be two given vector sets and 
w, the weights corresponding to each pair x,, y,. All possible 
orthogonal matrices U for which the function 

RR is a known symmetric positive definite matrix whose 
positive eigenvalues/z k and eigenvectors a k can be determined 
by standard procedures. The general solution of (5) is of the 
form 

(S + L)= (sii + lu)= (~. ak~kj, akV/l.lk), (6) 
k 

where ak~ denotes the ith component of a k and the arbitrary 
quantities o k can only assume the values + 1. If an eigen- 
value/z k is degenerate the eigenvector a k of [~R cannot be 
determined uniquely. However, S + L will not be affected by 
this ambiguity if all its eigenvalues of the magnitude x/~tk 
have identical signs. The final construction of all orthogonal 
matrices U = (uii) for which E assumes an extremal point is 

e = ½ Y w. (Ux. - y.)2 
n 

has an extremal point must obey [see equation (9) of 
Kabsch, 1976] 

U(S + L) = R. (2) 

Writing Xnk and Ynk for the kth components of the vectors x, 
and y,  the matrices R and S are defined as 

R : ( r /y) :  ( ~  wnYniXnj ) (3) 
tl 

S = (su)= (~  w.xnix.j ). (4) 
n 

L = (l~j) is a symmetric matrix of Lagrange multipliers which 
is determined from the equation 

(S + L)(S + L) = J~R. (5) 

(1) given by 

Uij = Z bkiakj, (7) 
k 

where bki is the ith component of the vector 

bk= Oa k = U(S + L)aJ(akV/.ttk) = RaJ(akV@k ). (8) 

The residual E at each extremal point is 

E = ½ Z w . ( U x . -  y .)2= ½ y w.(x~ + y~) 
n n 

- -  ~ why n. (I.Ix.) 
n 

= ½ Z Wn(x2n + yn2) - Z wn[ Z (bk.y.)(x.-ak)] 
n n k 

=½ Z w.(x~ z + yn z ) -  Z bk.(Rak) 
n k 

= ½ Z wn(xZ~ + y2 )_  Z OkV"Pk. (9) 
n k 


