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Abstract. We have developed a program – TexPat for
quantification of texture patterns in order to facilitate, speed
up and improve the accuracy of this analytical method.
The program introduces new approaches for automated
detection of centre and symmetry axes and simplifies the
process of indexing and calculating the unit cell para-
meters. The main algorithm of the program uses the sym-
metry properties of the texture pattern images. The succes-
sive steps help to process the reflections of the pattern
using the peak shape extracted from well-separated peaks.
The program generates a list of unit cell parameters, all
processed reflections with Miller indices and their inte-
grated intensities. The quality of the results obtained by
TexPat is compatible with published data.

Introduction

Many compounds, including clay minerals, form needle-
or plate-shaped crystals. Specimens of fine-grained lamel-
lar and fiber minerals prepared by sedimentation from sus-
pensions onto supporting surfaces or films form textures
in which the component microcrystals have a preferred
orientation. Texture patterns of lamellar crystals tilted with
respect to the electron beam are called oblique texture
electron diffraction patterns [1]. One great advantage with
oblique texture patterns is that they can provide data from
the full 3D diffraction pattern in a single exposure.
With finely dispersed minerals, the electron diffraction

method can give a special kind of diffraction pattern, the
texture pattern, which contains a two dimensional distri-
bution of a regularly arranged set of 3D reflections [2].
Experimental data show that, owing to the small crystal
dimensions, the scattering of electrons by texture speci-
mens is in most cases quite close to kinematical ([1], [3])
which makes it easier to calculate structure factors from

the integrated intensities. However, quite complicated al-
gorithms are needed for extracting the data from texture
patterns.
The analysis of texture patterns must be performed in a

different way compared to regular electron diffraction pat-
terns, due to different geometrical settings. In the first
step, the centre of the texture pattern must be obtained
and a background correction performed. Secondly, the
main symmetry axes, which pass through the centre of the
texture pattern, must be detected since the plate can be
arbitrarily rotated during the digitization procedure. The
last steps have the same aim as in electron diffraction
structure analysis: determination of unit cell parameters
and integration of intensities of indexed reflections. None
of the steps in the analysis are trivial. The present work is
aimed at facilitating and speeding up this analysis, using a
computer program. The set of algorithms presented in this
work is general and works on all types of patterns with
2mm symmetry.

Materials and methods

Texture patterns were taken at the Institute for Geology of
Ore Deposits, Petrography, Mineralogy and Geochemistry
in Moscow using a 400 kV electron diffraction camera and
recorded on glass plates or imaging plates (DITABIS, Ger-
many). Glass plates were digitized off-line using a Kite
CCD camera (Calidris, Sollentuna, Sweden) with a 12-bit
grey scale. Each scan produced a digital image with a size
of 1280� 1024 pixels. The images were saved in tiff format
since it allows storing the data in 16-bit grey scale. Imaging
plates were scanned by DITABIS imaging plates scanner.
All the algorithms were written using Cþþ program-

ming language (Microsoft Visual Cþþ1 6.0). All image-
processing routines were implemented in a separate mod-
ule library. This library has over 50 different functions to
perform computations such as Fourier transforms, filtering
etc. The library provides the possibility to load and save
images and scaled magnitudes of the Fourier transform in
several graphical formats. Another part of the program is a
mathematic kernel, which provides a set of functions for
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working with numeric data sets: non-linear fitting, smooth-
ing and solving systems of linear equations. The rest of
the algorithms, such as indexation, unit cell parameters
refinement, peak search and peak integration, were imple-
mented in a separate module.
The developed user interface enables all the interactive

operations, options and calculations to be performed via
dialogs, buttons and menus. Each step can be customized.
Patterns can be displayed in grey scale or transformed to
pseudocolor. The user can change the color palette manu-
ally. Processed data can be saved in a special file so the
user can store and load all processed information for each
texture pattern. This is important because it can take a lot
of time to analyze the geometry of a texture pattern in
order to index the pattern and extract the intensities. The
output of the program can be saved in formats, which can
be read directly into standard programs used for crystal
structure solution (e.g. Sir2000, SHELX-96). Another ad-
vantage of the user interface is its easy-to-follow structure:
the user will not be lost in all the menus and toolbars
available in the program.

Geometry of the texture patterns

The reciprocal lattice of a single crystal is a 3D set of
periodic points. If a specimen contains a number of crys-
tals then their reciprocal lattices are combined into a sin-
gle reciprocal lattice with a common origin. If a specimen
consists of numerous crystals of the same compound ro-
tated at random around a certain axis, each reciprocal lat-
tice point will generate a ring (excluding those lying on
the axis of rotation) and all the rings lie on coaxial cylin-
ders (Fig. 1a and 1b). Such a specimen is called textured
and the rotation axis is called the texture axis. Since the
electron wavelength is so extremely short (for example,
0.0197 �A for 300 kV) the Ewald sphere is so large that it
can be approximated as a plane out to 1 �A resolution. An
electron diffraction pattern is an approximate representa-
tion of a plane cross section through the reciprocal lattice
passing through the common origin, perpendicular to the
electron beam. When a plate texture specimen is perpendi-
cular to the electron beam, the diffraction pattern becomes
a set of concentric rings (inset in Fig. 1a).
A tilting of the texture support plane with respect to

the electron beam by a tilt angle j corresponds to cutting
out a section through cylinders by a plane (Fig. 1c). This
intersection gives a set of ellipses, along which the reflec-
tions are grouped (Fig. 1d).
The crystals of a texture are not perfectly parallel to

the support film, but are slightly misoriented over a certain
solid angular interval. Typically, the misorientation w is
about 2–4�. The smaller this interval, the more perfect is
the texture. This type of distribution transforms the rings
in reciprocal space to spherical bands having the common
centre in the reciprocal lattice origin. As a result, the re-
flections on texture patterns have the shapes of arcs
(Fig. 1d). A texture pattern always has 2mm symmetry due
to its geometry (Fig. 1d).
The above mentioned geometry is only for textures ro-

tated around one of the crystallographic axes (this is most
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Fig. 1. Formation of a texture pattern. (a) A texture pattern arises
from many randomly rotated flat single crystals. Inset: the Fourier
transform of (a) presents a set of concentric rings. (b) The full 3D
diffraction pattern of the texture sample is composed of several sets
of rings, each with its l index. (c) An oblique texture pattern, formed
by tilting the sample, is a plane p through the 3D diffraction pattern
shown in (b). The plane p cuts through the diffraction pattern at
points A–F. (d) An oblique texture pattern of lizardite. The diffrac-
tion points marked A to F correspond to those shown in (c).
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easily achievable for plate-like crystals). The rotation axis
(the texture axis) is defined as the c*-axis. TexPat works
only for such texture patterns.

Processing of a texture pattern by TexPat

The processing of the texture pattern by TexPat contains
the following steps:

� detection of the centre;
� estimation and subtraction of the background;
� determination of the ellipse axes and the tilt angle;
� indexing and calculation of the unit cell parameters;
� integrating intensities of reflections.

Detection of the centre

The first critical step in the analysis of any texture pattern
is to determine the position of the centre (000 reflection),
since all the other steps are dependent on a correctly
placed centre. The centre can be positioned automatically
or manually.
The automatic centre detection algorithm is based on

the normalized cross-correlation [4]. Since any texture pat-
tern has a centre of symmetry at the 000 reflection, the
texture pattern remains the same when rotated by 180�

around the axis perpendicular to it and passing through
the 000 reflection. If the pattern is rotated around an axis
passing through any position other than the 000 reflection,

the resulting texture pattern will be shifted compared to
the original one. This shift can be used to calculate the
centre of the texture pattern, i.e. the position of the 000
reflection. This is a quite stable and accurate method for
centre of symmetry detection.
Alternatively, the user can choose four symmetrically

related reflections, with the same d-value, to determine the
centre from those points. Then the centre of the texture
pattern is at the centre of the circle containing those four
reflections.
The difference between automatically calculated centre

position and the centre calculated from the user-defined
four reflections was found to be less then 1=2 pixel in each
x- and y-directions on the texture pattern with the size of
1024 � 1280 pixels.

Estimation and subtraction of the background

Since the background of the texture pattern is in general a
radially symmetrical function, a two-dimensional back-
ground can be reconstructed from the averaged one-dimen-
sional profile taken from the centre of the texture pattern
(Fig. 2a) and then subtracted from the base image. The
reflections are better resolved after background subtraction
(Fig. 2b) and can be displayed in the same range of inten-
sities. The one-dimensional profile was approximated with
a Gaussian or Lorentzian function in TexPat (Fig. 2c). The
user can modify control points of the approximating
curve.
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a� b�

c�

Fig. 2. Background estimation of a texture pattern of kaolinite miner-
al (triclinic). (a) Before and (b) after background subtraction. (c) Dia-
log box for background estimation. The solid curve corresponds to
the radial distribution function of the texture pattern profile starting
from the centre. The curve with squares corresponds to the back-
ground estimated by TexPat. The user can modify the background by
moving the squares.



Determination of the ellipse axes and tilt angle

In order to describe the geometry of a texture pattern, the
directions of the main axes for ellipses must be found
first. Since any texture pattern always contains two per-
pendicular mirror symmetry planes, horizontal flipping of
the texture pattern helps to detect the symmetry elements
of the pattern. The axes are always perpendicular to each
other, so it is sufficient to find only one of those direc-
tions.
Unlike spot diffraction patterns, the reflections on a

texture pattern are arcs and it is not easy to determine the
centre of an arc visually. Consequently, the symmetry axes
are also difficult to determine. TexPat introduces a special
algorithm for determining the symmetry axes (Fig. 3a).
The algorithm utilizes the 2mm symmetry property of the
texture pattern and compares the original pattern with the
horizontally flipped pattern. The flipped pattern should fit
perfectly on the original pattern after a certain shift and
rotation are applied. Then the rotation will tell us the di-
rection of the mirror axes.
TexPat compares the Fourier transforms of the original

and flipped texture patterns. The comparison is done in a
polar coordinate system, where an angular rotation be-
comes a circular shift. Normalized cross correlation is
used to find the value of rotation angle a of a texture
pattern in order to fit the flipped pattern. The direction of
the mirror axis is then half of the rotation angle a from
the horizontal axis (x)

b ¼ a=2 (1)

Fig. 3a shows the texture pattern of the mineral kaolinite
with calculated main axes of symmetry marked.
The algorithm was tested on both texture patterns and

spot patterns with 2mm symmetry and worked very well
on both. The error is larger for texture patterns and in-
creases when reflections have big azimuthal length, and
can be up to 0.5� (the arc length is approximately 5 pixels
at a distance of 500 pixels away from the texture pattern
centre). In this case the user can choose the direction of
the minor axis by picking a point, which lies on that axis.
Most texture patterns have some reflections lying on that
axis, simplifying the task of picking a point.
The diffraction spots in oblique texture patterns fall on

sets of ellipses due to the geometry of the texture patterns
(Fig. 3a). The ratio between the major and minor ellipse
axes is determined by the tilt angle of the texture support

plane from the plane normal to the electron beam
(Fig. 3b). The tilting angle j can be calculated from:

j ¼ arccos ðe2=e1Þ ; ð2Þ
where e1 and e2 are lengths of the major and minor ellipse
axes.
The user can define these lengths for any single ellipse

by moving the points along the main axes for the ellipse
(Fig. 3a). The error in calculations of the tilt angle can be
quite high since the major axis of any given ellipse cannot
be measured directly and depends on the precision in the
placement of the point by the user, while the length of the
minor axis of the ellipse can be calculated with high preci-
sion: there are always some reflections with l ¼ 0 lying on
the minor axis, so the point can be explicitly defined by
the user.

Indexing and lattice determination

One advantage of texture patterns is the possibility to de-
termine all unit cell parameters of a crystal unambiguously
and index all the diffraction peaks from only a single tex-
ture pattern. In some cases, it is even possible to distin-
guish different crystal systems and determine the space
group of the crystal from one texture pattern.
Before determining the lattice parameters, one has to

define the 3D indices for a few reflections. The indexing
is based on the direct relationship between the texture pat-
tern and the reciprocal lattice. For a reflection hkl with the
reciprocal lattice vector Hhkl:

Hhkl ¼ ha*þ kb*þ lc* ð3aÞ
dhkl ¼ 1=jHhklj ¼ 1=Hhkl ð3bÞ

where a*, b* and c* are the basic reciprocal lattice vectors.
Indexing a texture pattern is often rather complicated,

but several characteristic features facilitate the indexation.
The distance between the line where the reflection hkl

is located and the minor ellipse axis is equal to the projec-
tion of the reciprocal lattice vector Hhkl onto the c* axis
(which is the major ellipse axis) and can be expressed as

Dhkl ¼
Ll

sinj
½h � a* � cos b*þ k � b* � cos a*þ l � c*� ð4Þ

where Ll is a scale factor of the pattern (L is the speci-
men-to-film distance and l is the wavelength) and j the
tilt angle of the texture specimen.
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Fig. 3. Formation of ellipses of the texture patterns.
(a) Defining the ellipse in the program by the user.
(b) The geometry of the texture pattern.



Since all reflections with the same h and k indices (for
example 122 and 123) are located on the same cylinder
(Fig. 3b), the radius of the cylinder Bhk, which is equal to
the length of the minor ellipse axis, can be expressed in
terms of real unit cell parameters a, b and g ([1])

Bhk ¼
Ll

sin g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

a2
þ k2

b2

 2 � h

a
� k
b
� cos g

r
: ð5Þ

Note that Bhk is independent of the l index. It is possible
to calculate the values of a, b and g unit cell parameters
automatically using a set of Bhk values.
All six unit cell parameters of a lattice can be obtained

from these two equations (4)–(5) by measuring the Dhkl

and Bhk values. Generally speaking, one needs to give
Miller indices of at least three independent reflections, all
with different h and k and at least one with l 6¼ 0. A full
and detailed description of how to index texture patterns
can be found in [1].
The equations (4) and (5) are simplified for several

kinds of symmetries, as described below.
The simpliest case is when a* and b* both are

equal to 90� (including triclinic crystals with two angles
¼ 90� or monoclinic with the unique axis c*). Then
cos a* ¼ cos b* ¼ 0 and (4) becomes

Dhkl ¼
Ll

sin j
l � c* : ð6Þ

In this case, all reflection centres are lying on equidi-
stant parallel lines. Reflections with the same l index will
lie on the same horizontal line and those with the same h
and k but different l will be on the same ellipse (Fig. 4a).
The distance between adjacent lines is equal to the length
of the reciprocal lattice vector c*.
The value of c* can easily be determined from the dis-

tance between the adjacent lines using (6) and so the l
index is assigned for all reflections.
A more complicated case is monoclinic crystals where

the unique axis does not coincide with the texture axis c*.
If b* is the unique monoclinic axis, �* is 90� so
cos b* ¼ 0, then equation (4) becomes

Dhkl ¼
Ll

sin j
½h � a* � cos a*þ l � c*� : ð7Þ

In this case, all reflections except those with h ¼ 0 will
appear pair-wise on the texture pattern (Fig. 4b and 4e).
The reflection pair, hkl and hkl will appear on the same
ellipse but separated from each other along the c* axis by
the distance

2
Ll

sin j
h � a* � cos b* : ð8Þ

All reflection pairs with the same h indices will be sepa-
rated by the same distances along the c* axis since the
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Fig. 4. Assigning the indices to the reflections (a) – (c) and splitting of the reflection hkl (d)–(f) for different symmetries. (a), (d) trigonal
(lizardite 1T). (b), (e) monoclinic (muscovite 2M1). (c), (f) triclinic (kaolinite).



distance is proportional to the h index (Fig. 4b and 4e).
The two reflections in such a pair are located with a dis-

tance of
Ll

sin j
l � c* away from either side of a line that is

parallel the minor axis.

Finally, for triclinic crystals with a* and b* both
6¼ 90�, all reflections except those with h or k ¼ 0 will
appear as groups of four on the texture pattern (Fig. 4c
and 4f). These four reflections, hkl, hkl hkl and hkl lie on
the same ellipse, but not equally separated from each
other. The reflections with the same h and k indices
(within the same ellipse) will be separated in the same
way along the c* axis. The distance between the two out-
ermost reflections, hkl and hkl, is

2
L � l

sin j
ðh � a* � cos b*þ k � b* � cos a*Þ ; ð9Þ

while the distance between the two innermost reflections,
hkl and hkl, is

2
L � l

sin j
jh � a* � cos b*
 k � b* � cos a*j : ð10Þ

The distance from the centre of the four reflections to the

minor axis is
L � l

sin j
l � c* (Fig. 4c and 4f).

In summary, reflections come in groups of four for tri-
clinic crystals and groups of two for monoclinic crystals
with the unique axis not parallel to the texture axis. In
other cases all 4 reflections �h� kl coincide exactly into
one reflection. Then all reflections are located on equidi-
stant lines perpendicular to the c*.
The algorithm implemented in TexPat calculates the

unit cell parameters from the three indexed reflections
given by the user. Once the unit cell parameters are deter-
mined, the expected positions of all the reflections are cal-
culated and superimposed on the texture pattern (Fig. 5a).
This helps users to check if their indexing is correct. It is
also possible to choose different space groups to remove
forbidden reflections so the user can even check the sys-
tematic absences and determine the space group or a set
of possible space groups of the crystal lattice (Fig. 5b).
The errors in the unit cell parameters determined from

three reflections can be high, because the exact positions
of arc-shaped reflections are difficult to define. The unit
cell parameters can be further refined by TexPat, using
more reflections. The user can select more, well separated
reflections from the texture pattern, and then the least
squares method [4] is used to minimize the differences
between the experimental d-values and those calculated
from the unit cell parameters. The standard deviations are
also given for the refined unit cell parameters [5]. A list of
theoretical reflection positions is calculated and stored for
later peak splitting procedures.
Unit cell parameters (with uncertainties) calculated by

TexPat, together with the earlier published data are pre-
sented in Table 1 for brucite and Table 2 for muscovite
2M1. They are in good agreement with published data.
Here the unit cell parameters given by TexPat were scaled
to the published data since the scale factor for the texture
pattern was not available. The scale factor can be cal-
culated using an internal standard, such as NaCl as an

addition to the main textured sample while recording the
pattern [1].
The largest error is for the c parameter of muscovite

2M1 which is about 1%. One reason is uncertainties in
measurements of the Dhkl values. Another reason is the
curvature of the Ewald sphere [1], which can be compen-
sated in the next step of integrating diffraction maxima.

Integration of the diffraction maxima

The next stage is the integration of reflection intensities
and the subsequent derivation of structure factors.
There are two methods for texture pattern intensity

measurements described in [6]. The first approach has
been used by Vainshtein, Zvyagin, Zhukhlistov and others
since it can be done “by hand”: integration of a small
region at the centre of the arc-shaped reflection.
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a�

b�
Fig. 5. (a) Assigning the indices for reflections for a texture pattern
of lizardite-1T (space group P31m, a ¼ 5.325 �A, b ¼ 7.259 �A). All
reflections on the first two ellipses are indexed with full 3D hkl in-
dices. R0 represents a horizontal position of the 113 reflection. It is
important to notice the difference between Bhk and R0 since Bhk is the
same for all reflections with the same h and k indices (for example,
reflections 100, 101 and 102 have the same Bhk ¼ B10), while R0 is
just a horizontal position of a reflection in the system coordinates of
the texture pattern. (b) The dialog box which is used for indexing the
texture pattern.



Then the square of the structure factor amplitude can
be calculated from the “local intensity” I 0hkl [1], [3] as

jFhklj2 /
I 0hkl

m � dhk0 � dhkl
; ð11Þ

where dhkl and dhk0 are the d values of reflection hkl and
hk0 respectively and m is the multiplicity factor for the
reflection hkl. The equation (11) uses the values of dhkl
and dhk0 in order to take into account the shape of the
reflection hkl.
This approach with “local” intensities depends on the

shape of the reflection and the region of integration.
The method can be used also in cases when the lengths

of the arcs in an oblique texture pattern are big. In this
case it is easier to measure the local intensity, for example
the I 0hkl value in the centre of the arc.
The overlapping of peaks must be taken into account

while using the approach, which is not a trivial task.
The second method is to integrate intensities under the

whole arc-shaped reflections. The separation of over-
lapping peaks is done automatically once the peak shape
has been parametrized from a few well-separated peaks.
Occasionally there is a possibility of full overlapping
when two or more reflections have the same or almost
(within given precision) the same geometrical properties,
like d and Dhkl values (see eqs. 3b and 4). Only then the
overlapping reflections cannot be separated.
For oblique texture patterns, when the tilting angle j is

taken into account we have (in relative values):

jFhklj2 /
Ihkl
m � R0 ; ð12Þ

where jFhklj is the magnitude of the structure factor for the
reflection hkl, R0 is the distance between the reflection and
the major axis of the texture pattern (shown on Fig. 5a),
Ihkl the integrated intensity of the whole arc and m is mul-
tiplicity factor of the reflection.
It was not possible to use this method previously due

to the lack of software, for estimating peak-shape para-
meters for all reflections simultaneously.
The peak shape was estimated from well-separated re-

flections by approximating the two-dimensional profile of
each reflection with a 2D Gaussian or Lorentzian function.
For the same texture pattern the values of full width on
half maximum (FWHM) along radial and azimuthal direc-
tions varied within 5–10%. For muscovite 2M1 we got:

FWHMrad ¼ 5.0 � 0.5 pixels ,

FWHMaz ¼ 21.0 � 1.5 pixels .

TexPat performs integration of the intensity contained in
the whole arc and gives the values of integrated intensities
as well as local ones. Due to the peak overlapping, the
program uses the peak shape and a list of theoretically
calculated peak positions to split the pattern into non-over-
lapping regions. Each region may contain one reflection,
non-overlapping with neighboring reflections, or more,
overlapping, reflections. Data points outside these regions
are not considered for further analysis.
To simplify the procedure of integration, the algorithm
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a� b�

Fig. 6. Contour plots of the first ellipse for the
texture pattern of the mineral muscovite 2M1. (a)
Full 3D hkl indices marked. (b) Polar coordinate
representation. Grey arrows represent the minor
symmetry axis of the ellipse. R – radius and F –
azimuthal angle.

Table 2. Unit cell parameters for muscovite 2M1 (intermediate com-
position of muscovite 2M1 and phengite 2M1), space group C2/c.

Source a/�A b/�A c/�A b/�

[9]a 5.1906(2) 9.0080(3) 20.0470(6) 95.757(2)

[9]b 5.2112(3) 9.0383(4) 19.9473(6) 95.769(5)

Zhukhlistovc 5.21 9.02 20.15 95.83

TexPatd 5.209(7) 9.020(9) 19.93(7) 95.6(1)

a: muscovite 2M1

b: phengite 2M1

c: manually calculated from the texture pattern, not published
d: scaled to the b parameter given by Zhukhlistov

Table 1. Unit cell parameters for brucite (space group P�33m1).

Source a /�A c /�A

[7]a 3.14979(4) 4.7702(7)

[8] 3.149(2) 4.769(2)

TexPatb 3.149(3) 4.777(4)

a: from neutron diffraction
b: scaled to the a parameter given by [8]



performs an extra step: it converts the image of the given
texture pattern (Fig. 6a) to polar coordinates (Fig. 6b).
The procedure is implemented for two-dimensional

Gaussian or Lorentzian peak shape functions using the non-
linear least squares fitting Levenberg-Marquardt method
[4], which is specially optimized for texture patterns. Thus
many variables (such as misorientation, tilt angle, radial
halfwidth and unit cell parameters) can be refined simulta-
neously. With this algorithm all reflections can be correctly
estimated – even very weak ones close to and nearly over-
lapped by stronger reflections, for example the weak reflec-
tion 020 (intensity 4 units) of muscovite 2M1 in Fig. 6a
which is strongly overlapped by two neighbors – reflec-
tions 110 and 
110 with intensities of 40 units each.
Any method for crystal structure determination depends

on the quality of the data; unit cell parameters, Miller in-
dices hkl and jFhklj values for estimated reflections.
The result given in the output of the non-linear fitting

procedure for the reflections taken from the imaging plate
data for the texture pattern of brucite are presented in the
second column of Table 3.
Reliability factors for estimated structure factors were

calculated using the equation:

R ¼
P

jjFexpj 
 jFcalcjjP
jFexpj

: ð13Þ

An R-value of 7.9% was obtained in this case. This is
quite accurate considering that the data comes from elec-
tron diffraction.

Conclusions

In this paper we have shown that the algorithms devel-
oped and implemented into the program TexPat may be
used as a tool for accurate estimation of unit cell para-
meters and diffraction intensities of electron diffraction
texture patterns.
The semi-automatic indexing procedure was developed

to avoid manual measuring of distances within the pattern,
which is very demanding, even for high symmetries, due
to arc-shaped reflections.
The peak-integration procedure has the advantage of

correctly estimating intensities even from patterns with se-
verely overlapping reflections. The estimated diffraction
intensities can be used for solving and refining crystal
structures.
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Table 3. Scaled values of integrated intensities for the reflections of
the brucite texture pattern.

Miller
indices

Ihkl,
[8]

Ihkl,
TexPat

jFhklj2,
[8]

jFhklj2,
TexPat

100 1260 2384 169 340

101a 14700 16913 2275 2778

102a 11300 10208 2306 2211

110a 10000 9991 4031 4273

111 2000 1653 849 744

112 –– ––

113 –– ––

114 1050 739 701 524

200 –– 299 171

201 2700 2020 1570 1198

202 1900 1647 1176 1082

203 800 624 567 469

204 170 125 139 108

120 –– 110 110

121 1380 1054 1328 1076

122 975 900 1000 978

a: reflections which have clear dynamical influence.


