STRUCTURE DETERMINATION AND CORRECTION FOR DISTORTIONS IN HREM BY CRYSTALLOGRAPHIC IMAGE PROCESSING

D.N. WANG and S. HOVMÖLLER
Department of Structural Chemistry, University of Stockholm, S-106 91 Stockholm, Sweden

and

L. KIHLBORG and M. SUNDBERG

Department of Inorganic Chemistry, University of Stockholm, S-106 91 Stockholm, Sweden

Received 1 October 1987; received in final form 25 March 1988

Abstract

A heavily distorted high resolution electron microscopy (HREM) image of a cesium-niobium oxide-fluoride sample wa reconstructed by crystallographic image processing (CIP). In the reconstructed image, showing 4bm symmetry, all metal atom were clearly seen with correct contrast, whereas in the original micrograph the fourfold symmetry was lost and only som areas could be interpreted in terms of an acomic arrangement. Defocus, astigmatism and electron beam and crystal tilt wer evaluated by CIP, and it was found that the distortion in this case was mainly due to beam tilt and crystal tilt. After correctin for the distortions, a calculated map was compared to the structure of an apparently isomorphous compound $\sim \mathrm{TlNb}_{7} \mathrm{O}_{18}$ previously solved by X-ray diffraction. The atomic positions agreed to within $\pm 6 \mathrm{pm}$. A simulated image with electron bear tilt was in good agreement with the experimental one.

1. Introduction

Crystallographic image processing (CIP) of electron micrographs has been in use for almost twenty years in molecular biology, especially for the study of th 1 crystals [1]. Over one hundred studies of protein crystals by electron microscopy and image processing have been published, many of them with three-dimensional structure determinations [2]. In molecular biology the main advantage of image processing is the noise reduction, since the noise often is stronger than the signal for both stained and unstained protein structures. Another very important reason for using image processing in molecular biology is the radiation sensitivity of biological molecules. In order to obtain high resolution or even medium resolution data (2 nm) it is necessary to collect information from many molecules, and to average over those by, for example, Fourier techniques.

For inorganic materials the situation is differ ent. Many of them are quite insensitive to radia tion damage, typically tolerating an electron dos a million times higher than that which destroys protein completely. Also the noise is less for a: inorganic crystal, since it does not need a stain t improve the contrast or an embedding medium t stabilize the structure. But there are still ac vantages of image processing that can be ver fruitful for improving the quality of HREM pis tures. By quantitative analysis of the amplitude and phases that make up an image, it is possib] to correct for electron-optical distortions. Th crystallographic symmetry can be imposed. an the resulting density map can then give a rath accurate structure. In a study of $\mathrm{K}_{7} \mathrm{Nb}_{15} \mathrm{~W}_{13} \mathrm{O}_{8}$ Hovmöller et al. [3] showed that atomic coord nates for the heavy metal atoms were determine with an accuracy of $\pm 10 \mathrm{pm}$ by HREM and CI by comparing the model derived from electrc
microscopy with the structure of an isomorphous compound determined by X-ray diffraction.

Smith et al. demonstrated the great importance of beam alignment in HREM [4,5]. A beam tilt of only 2 to 3 mrad could shift apparent atom positions by as much as 20 to 30 pm . They concluded that without correcting for this effect, interpretation of HREM images in terms of atomic coordinates must be made with great caution.

Recently Henderson and his coworkers [6] showed that it is possible using CIP to detect and quantify most of the electron-optical effects which may distort the images in the electron microscope, including beam tilt. This is possible because the image contains both amplitude and phase information for a large number of Fourier te ms, whereas the electron-optical distortions are described by only a few variables. The crystal symmetry is, of course, very valuable in determining
the distortions. By correcting for electron-optical distortions, and also some crystal distortions that are not likely to be as serious for inorganic compounds as for proteins (such as bending), Henderson et al. could determine the phases of a crystal of bacteriorhodopsin to 0.35 nm resolution. It was possible to reconstruct data both from heavily astigmatic images and from images with beam tilt large enough to cause phase errors of over 360°.

In the present investigation we have applied CIP to high resolution (0.25 nm) images of a cesium-niobium oxide-fluoride sample of unknown composition. The electron diffraction patterns of this phase indicated tetragonal symmetry with $a=2.76 \mathrm{~nm}$ and $c=0.39 \mathrm{~nm}$. These observations together with several general features of the HREM images recorded were compatible with a structure of " $\mathrm{Rb}_{3} \mathrm{Nb}_{54} \mathrm{O}_{146}$ " type [7]. However most of the images did not show tetragonal sym.

Fig. 1. HREM image of $\mathrm{Cs}_{\boldsymbol{x}} \mathrm{Nb}_{54}(\mathrm{O}, \mathrm{F})_{146}$. Although the electron diffraction pattern shows 4 mm symmetry, this image has no 4 -fol symmetry. Notice that in some areas in each unit cell atom-like features are white, while in other areas similar features appear a black points. This appearance is found in every unit cell of the area in the picture where the crystal is thin. An amorphous region lik the one at the upper right corner is especially suitable for evaluating defocus and astigmatism of the picture, by optic: diffractometry. The boxed area was digitized and processed. Electron optical magnification $500,000 \times$.
metry. This was particularly true for one set of images with excellent resolution taken from a very thin part of a crystal fragment. In one direction the contrast features could easily be interpreted in terms of an atomic arrangement, while in the perpendicular direction the interpretation was not straightforward. In order to determine the structure unequivocally and to find the reason for the deviation from tetragonal symmetry in the micrographs but not in the electron diffraction pattern, one of the images, that which seemed to be recorded close to Scherzer focus (fig. 1), was used for image reconstruction by CIP. We concluded that there must be enough redundant information in the image to determine the effects that distorted the picture, and we expected to be able to solve the structure by finding and correcting for these distortions. After the structure had been solved from this single electron micrograph, we applied CIP to two more images, recorded from another fragment, and obtained similar structural results.

2. Electron microscopy

A few large colourless crystals selected from a multiphase cesium-niobium oxide-fluoride sample were crushed in an agate mortar and dispersed in n-butanol. Drops of the resultant suspension were collected on a perforated carbon film supported on a Cu grid. The grid was then examined in a JEOL 200CX electron microscope, equipped with an ultrahigh resolution top-entry goniometer stage with tilt angles of $\pm 10^{\circ}$ and operated at 200 kV . The radius of the objective aperture used corresponded to $4.1 \mathrm{~nm}^{-1}$ in reciprocal space, and the HREM technique was applied. Thin crystal fragments projected over holes in the carbon film were aligned with the short ($\sim 0.39 \mathrm{~nm}$) crystal axis parallel to the electron beam.

3. Image processing

The electron micrograph (fig. 1) was first checked in an optical diffractometer. The optical
diffraction pattern had sharp and strong diffraction points out to 11 orders or more, corresponding to at least 0.25 nm resolution. Different areas of the micrograph were compared, and the optical diffraction pattern was fairly uniform over the thin part of the crystal. In a region of amorphous material the shape of the contrast transfer function (CTF) could be seen to be practically circularly symmetric, indicating only little astigmatism. The intensities of the spots in the optica diffraction pattern indicated 4 mm symmetry. A region of about 50 unit cells near the edge of ths crystal (indicated in fig. 1) was chosen for furthe) processing, on the basis of being a very thin par with strong and symmetric diffraction to higl resolution. Due to the very limited thickness, thi weak phase object approximation should hold rea sonably well.

The selected area was scanned in a Joyce-Loet flat-bed microdensitometer MDM 6, using a raste size of $40 \times 40 \mu \mathrm{~m}$, and recording 256 by 25 raster points. The total area scanned was the about $1 \mathrm{~cm}^{2}$. A raster size of $40 \mu \mathrm{~m}$ at 500,00 times magnification corresponds to a samplin size of 0.08 nm in the crystal, fine enough t preserve information to at least 0.25 nm resol tion.

The digitized image was transferred to a VA: $11 / 750$ computer, where all further data pro essing was done. The Fourier transform of th scanned image was calculated. This gives both th amplitude and the phase information. An image a periodic object can be described as a sum (cosine waves of different periodicities (i.e. wav lengths), denoted by the (h, k) indices, each wil a specific height (amplitude) and position (phas relative to a given origin point in the imag Initially the origin is simply the center of tl scanned area, a point which usually does n coincide with a symmetry element.

The reciprocal lattice was indexed on the cor puter graphics display, and later refined using t! peak coordinates of 12 strong reflections. Bas on this accurate lattice, the amplitudes and phas for all reflections out to 0.25 nm resolution we extracted from the Fourier transform. Amplitud were calculated by integrating over the $3 \times 3 \mathrm{gl}$ points closes: to the predicted position of t
lattice point in the Fourier transform, followed by subtraction of the local background. The phases were taken as the phase value at that grid point in the calculated Fourier transform which was closest to the predicted position of the lattice point.

The positions of the expected 4 -fold axes in the unit cell were found by calculating the phase residual modulo 180° at every position in the unit cell, as described earlier [3]. When the origin is on a 2 - or 4 -fold axis all phases should be 0° or 180°. The initial, arbitrary, origin of the unit cell was shifted to coincide with one of the 4 -folds by shifting the phase values of ail reflections by $360(h \cdot x+k \cdot y)$ degrees, where (x, y) is the position of a 4 -fold axis in the unit cell relative to the initial, arbitrary origin.

A Fourier transform of a two-dimensional function is a two-dimensional array of complex numbers $A+\mathrm{i} B$. The amplitude part of the Fourier transform corresponds to the EL pattern (fig. 2a) and to the optical diffraction pattern, with the important difference that the ED pattern, unlike the other two, has not been attenuated by the CTF. In addition, the ED pattern relates to a much larger area of the crystal than that scanned. The computer-calculated diffraction pattern was displayed on a Digital VS11 raster graphics colour screen (fig. 2b).

ED intensities were determined by integrating over the diffraction spots after scanning the ED negative in the microdensitometer.

4. Image simulations

From structure models derived, images were calculated using a locally modified version of O'Keefe's SHRLI suite of programs [8]. The development of the wave field within the crystal was approximated by the multislice method [9] and the imaging system was simulated by an aberrated lens. The insertion of patches of the calculated images into the observed one was made on a KONTRON IPS image processing system.

5. Determination of defocus and astigmatism

An objective lens in an electron microscops does not give an undistorted enlarged image of thr object. The image formation is affected by severa distorting factors inherently present in the micro scope. These effects influence both amplitude and phases of the diffracted beams. Consequentl! it may not always be justified to interpret ai electron micrograph directly. However, the differ

Fig. 2. (a) Electron diffraction pattern from the crystal shown in fig. 1. The symmetry is tetragonal 4 mm , and it diffracts to some 1 orders, corresponding to 0.16 nm . (b) Computer-calculated diffraction pattern from the boxed area in fig. 1 shows the same symmetr as the electron diffraction, and it extends equally far in all directions. The calculated diffraction extends only to about 11 orders, c 0.25 nm resolution, due to the damping effects in the electron microscope.
ent distortions can be detected and quantified by CIP, and then corrected for, with a more or less distortion-free image as a final result.

The number of parameters that determine the distortions in the image is very limited. For a thin inorganic crystal one only needs to take into account the following seven parameters:

defocus	1 parameter,,
astigmatism	2 parameters,
beam tilt	2 parameters,
crystal tilt	2 parameters.

The other parameters like spherical aberration C_{s}, chromatic aberration C_{a}, beam convergence and the size of the aperture used must also be taken into account, but these can be treated as either known constants of the instrument (C_{s} and C_{a}) or factors which limit the resolution by damping the CTF at high resolution. The image formed is then a function of a limited number of unknown parameters and the noise, as:
structure + crystal orientation

$$
+ \text { electron-optical effects }+ \text { noise } \rightarrow \text { image }
$$

From our earlier study of the compound $\mathrm{K}_{7} \mathrm{Nb}_{15}$ $\mathrm{W}_{13} \mathrm{O}_{80}$ we know that the noise level of HREM images of such metal oxides, taken over holes in the holey-carbon film, can be very low [3]. The problem of reconstructing an undistorted image is then reduced to finding and compensating for the 7 parameters listed above. Unfortunately these parameters give rise to nonlinear effects, but it is still possible to estimate the parameters quantitatively. The problem may be thought of as finding the solution to a system of equations with 7 unknown parameters and about 100 equations, namely the amplitudes and phases of the diffraction points of the image.

Fortunately the different parameters influence the image in different ways, and they can therefore be determined one by one at least to a first approximation. The effect of the defocus is perhaps the most well known. It changes the appearance of the CTF. At Scherzer focus all reflections within the resolution limit of the microscope are recorded with the correct phase. Only the amplitudes are distorted, namely by being at-
tenuated by the smooth CTF. Outside the Scherzer limit the phases are alternately wrong or correct. If the image is not recorded at Scherzer focus, the CTF changes sign already at a lower resolution. When the CTF changes sign, the reflections chang phase by exactly 180°, i.e. they are reversed in contrast, making black white and vice versa. Further out in resolution the CTF changes sign again and the phases in this region will be correct. The CTF continues to oscillate in this manner, giving rise to rings of reflections with phase errors of 0° $180^{\circ}, 0^{\circ}, 180^{\circ}, \ldots$, until finally the CTF i: damped out by beam convergence and focu: spread and all reflections vanish.

When an image is astigmatic, the imaging sys tem is not cylindrically symmetric. This is equiv alent to having different defocus values in differ ent directions of the image. To a good approxima tion the astigmatism can be described by only tw parameters; the direction of maximum defocu: and the magnitude of the difference in focus be tween the average and maximum defocus value: The effect of astigmatism is to change the abov mentioned rings of alternating contrast caused b the CTF into ellipses. Just as was the case fc defocus, image phases are changed only in mult ples of 180° due to astigmatism. If an image affected by astigmatism this can be seen in tt optical diffraction pattern. An amorphous regic is especially useful for this purpose, owing to tt continuous character of its diffraction patter where the elliptical appearance of the CTF easily seen. To a good approximation the astigm tism and focus are constant over the whole art recorded in one micrograph, and it is possible determine the astigmatism from a small amorpho region outside the crystal. In the calculated Fouri transform astigmatism can also be determined 1 comparing amplitudes and phases of symmetry-i lated reflections. Symmetry-related reflectio have the same vector length in Fourier space, al they have the same amplitudes. In an astigma image this symmetry is lost, and it can be verifi that it is really an effect of astigmatism by t sudden phase changes of 180° for reflections ju outside a node of the CTF, i.e. ouiside the po of reversal of sign for the CTF. It is important reniember that neither defocus nor astigmati:
will cause a gradual change in phase values, but only sudden shifts of 180°.

6. Effect of beam tilt and crystal tilt

If the electron beam is not running down exactly along the optical axis of the electron microscope, the beam tilt will cause distortions of the image. These distortions can be distinguished from those caused by defocus and astigmatism, in that the beam tilt for a thin specimen to a first approximation only affects the phases, and that the phases are changed by [4]:
$\Delta \phi=-2 \pi \lambda\left(C_{\mathrm{s}} \lambda^{2} K^{2}-\mathrm{d} f\right) K_{0} \cdot \boldsymbol{K}$,
where K is a reciprocal vector and K_{0} the beam tilt vector, which represents the direction and the magnitude of deviation of the electron beam from the optical axis. In one direction of reciprocal space, along the direction of maximum beam ult, the phases will change most significantly, but in the perpendicular direction the phases will be unaffected. It is clear that both astigmatism and beam tilt can cause an image to lose the true symmetry of the crystal, but by CIP it is possible to distinguish between these effects in pictures.

The effects of crystal tilt are somewhat similar to those of beam tilt, but for thin crystals they are less severe for the same magnitude of tilt [4]. There is a possibility that the crystal is bent, and that the thin edge has a different orientation from the main part of the crystal. This can be tested by inspecting the optical diffraction pattern from the small area that is to be scanned. If this area of the crystal is tilted, then the diffraction pattern will become asymmetric in intensity, with a loss of high resolution reflections in the direction perpendicular to the tilt axis. In thicker paris of the crystal these effects become even stronger.

7. Results

It is clear from the electron micrograph (fig. 1) that the 4 -fold symmetry has buen lost in the image. In some parts of the unit cell black dots are
seen on a light background, while in other parts the contrast seems reversed. Thus the image must have been distorted by crystal tilt. beam tilt and/or astigmatism.

We first evaluated the possible astigmatism of the image. There was an area of amorphous material adjacent to the crystal (fig. 1). The optical diffraction pattern of this area was fairly symmetrically round indicating low astigmatism. We also estimated the astigmatism by comparing the amplitude obtained from the Fourier transform of the image with the intensities obtained by ED. The amplitudes of all 160 reflections in the unique half of the diffraction pattern are listed in table 1. The CTF in different directions of reciprocal space i.e. the ratios between amplitudes obtained from the Fourier transform of the image and from the electron diffraction pattern, were plotted as functions of reciprocal vector length along differen directions. Two of them, along [100] and [010 respectively, are shown in figs. 3a and 3b. Ths CTF was found to be similar in the differen directions and thus the astigmatism is quite small.

The defocus value can also be determined from fig. 3 , since different defocus values will chang the CTF and thus the attenuation of reflections a different resolution. From the ED intensities ws can only obtain the square of the CTF, but it is still possible to distinguish the two possible case: of defocus values $\mathrm{d} f=-100 \mathrm{~nm}$ and $\mathrm{d} f=-67$. . nm . The contrast transfer functions are shown ir figs. 3 c and 3 d for these two defocus values together with the experimentally determined ratio: between the amplitudes in the image and in thi electron diffraction pattern. The amplitude ratio illustrated in figs. 3a and 3b will follow the ab solute values of the CTF. For the defocus value o -100 nm (fig. 3c) the magnitudes of the CTF wil be close to zero around the cross-over point a aboui $2 \mathrm{~nm}^{-1}$, while for -67.5 nm defocus th magnitudes will have a large value at $2 \mathrm{~nm}^{-1}$ añ a local minimum near $3 \mathrm{~nm}^{-1}$. The ratios of thi observed amplitudes indicate a defocus value o about -100 nm , since they are close to zer, around $2 \mathrm{~nm}^{-1}$. Aisc, a ring of weak reflection around the 5 th-order spots in the Fourier trans form supports this conclusion (fig. 2a). Conse quently, the originally cbscried phascs of all th

「able 1
Observed (after CTF correction) and deduced phases and amplitudes for the $\mathrm{Cs}-\mathrm{Nb}-\mathrm{O}-\mathrm{F}$ compound; the observed phases and implitudes were extracted from the Fourier transform of the negative of the electron micrograph shown in fig. 1; the deduced phases vere arrived at by imposing exact P4bm symmetry, and minimizing difference of phase error between adjacent diffraction spots in eciprocal space; the amplitudes were averaged over the 4 (or 2) symmetry-related diffraction points. The deduced phases and iveraged amplitudes were used to calculate the corrected density map (fig. 5)

${ }^{1} k$	Observed phases (deg)				Deduced phases (deg)				Observed amplitudes				Averaged amplitudes
	(h, k)	(h, \bar{k})	(k, h)	(k, \bar{h})	(h, k)	(h, \bar{k})	(k, h)	(k, \bar{h})	(h, k)	(h, \bar{k})	(k, h)	(k, \bar{h})	
11	147	161	-	-	180	180	-	-	1020	1459	-	-	1239
20	150	-	-	195	180	-	-	180	2399	-	-	1987	2193
21	158	327	348	182	180	0	0	180	2378	2270	2495	2270	2353
22	338	337	-	-	0	0	-	-	2891	2763	-	-	2827
31	328	330	350	353	0	0	0	0	1558	1697	1921	1881	1764
32	134	308	345	163	180	0	0	180	1533	1760	1578	1682	1638
33	28	85	-	-	0	0	-	-	512	719	-	-	615
40	316	-	-	324	0	-	-	0	648	-	-	506	577
41	332	303	172	89	0	180	180	0	674	425	780	1056	733
42	332	338	344	286	0	0	0	0	996	612	942	581	782
43	139	327	336	155	180	0	0	180	88	736	267	582	418
44	149	145	-	-	0	0	-	-	1429	792	-	-	1110
51	125	193	201	91	0	0	0	0	309	491	368	407	393
52	304	137	154	301	180	0	0	180	692	1130	705	1135	915
53	152	302	143	198	0	0	0	0	556	282	501	-72	316
54	348	153	141	246	180	0	0	180	683	675	717	520	648
55	152	128	-	-	0	0	-	-	2654	1272	-	-	1963
60	185	-	-	233	0	-	-	0	162	-	-	-70	46
61	218	281	78	110	0	180	180	0	264	343	431	210	312
62	118	143	188	87	0	0	0	0	1239	1175	1427	1465	1326
63	350	257	169	132	180	0	0	180	311	59	421	-296	123
64	122	106	161	109	0	0	0	0	845	745	975	804	842
65	318	116	154	255	180	0	0	180	2431	1564	2593	1816	2101
66	333	268	-	-	180	180	-	-	5456	3098	-	-	4277
71	160	169	242	49	0	0	0	0	496	755	889	1099	809
72	275	132	206	236	180	0	0	180	648	974	625	1278	881
73	122	147	199	56	0	0	0	0	2680	3018	4156	4196	3512
74	136	319	5	41	0	180	180	0	1752	1908	2466	2347	2118
75	310	328	344	231	180	180	180	180	441	469	1046	731	671
76	163	312	352	67	0	180	180	0	1706	1316	2134	1265	1605
77	162	264	-	-	0	0	-	-	692	452	-	-	572
80	178	-	-	60	0	-	-	0	3318	-	-	5252	4285
81	185	359	103	36	0	180	180	0	1038	2056	2389	3046	2132
82	344	348	73	204	180	180	180	180	1950	3629	4205	5210	3748
83	133	339	47	19	n	180	180	0	2047	3267	4392	4894	3650
84	336	296	12	84	180	180	180	180	183	165	306	379	258
85	156	326	17	7	0	180	180	0	1909	2108	3231	2617	2466
91	208	198	317	360	0	0	0	0	1467	1930	3024	3200	2405
92	54	199	302	164	180	0	0	180	821	1675	2393	2906	1948
93	90	66	93	158	0	0	0	0	251	328	285	217	270
94	257	25	71	327	0	180	180	0	619	1211	1746	1771	1336
95	74	6	38	151	180	180	180	180	242	592	737	834	601
100	66	-	-	149	0	-	-	0	1335	-	-	2888	2112
101	201	7	174	17	180	0	0	180	352	426	519	521	454
102	180	224	20	271	180	180	180	180	168	150	391	293	250
103	240	329	129	23	180	0	0	180	161	264	83	-217	72

Fig. 3. Determination of defocus and astigmatism. The amplitudes obtained from the Fourier transform of the image were divided by those from electron diffraction and the ratios weic plotted as a function of reciprocal vector length in different directions, giving a two-dimensional function of $|C T F|$. All the curves are similar, proving that the astigmatism is negligible. Two of them, along the [100] and [010] directions respectively, are shown in (a) and (b). The defocus value of the image was determined by comparing the functions in (a) and (b) to the absolute value of the CTF. The |CTF| for JEOL 200CX at $\mathrm{d} f=-100 \mathrm{~nm}$ (c) and $\mathrm{d} f=-67.5 \mathrm{~nm}$ (d) are similar to the experimental curves. For any other defocus value the $|C T F|$ is not in close agreement with the curves in (a) and (b). The defocus of -67.5 nm is discarded because the amplitude of its CTF has a large value at $2 \mathrm{~nm}^{-1}$, where the amplitudes of the experimental curves are close to zero. Therefore, the defocus value of the image is determined as -100 nm .
reflections outside $2 \mathrm{~nm}^{-1}$ frequency have been reversed for further investigations, as shown in the first columns in table 1.

The image was distorted by crystal tilt. This could be seen already on the optical diffractometer. In the thin area of the crystal the diffraction pattern is quite symmetric, but in the thicker areas of the crystal higher-order reflections along the direction $(4,-1)$ decreased in intensity and eventually vanished. A quantitative estimate of the crystal tilt could be made by comparing amplitudes of symmetry-related reflections (see table 1). For the reflections $(7,1),(7,2),(7,3),(8,1),(8,2)$, $(8,3)$ and $(9,1),(9,2),(9,3)$ the amplitudes of sy:nmetry-related reflections decrease in the order of $(k,-h)>(k, h)>(h,-k)>(h, k)$. This systematic relation is very striking and can definitely
not be attributed to random noise. The amplitudes of ($k,-h$) are 2 to 3 times larger than those of (h, k). For a crystal thickness of 3.94 nm (10 slices) a crystal tilt of $(60,-15)$, equivalent to 56 milliradians, will simulate the amplitude values of table 1 very well.

8. Space group determination

The phases extracted from the Fourier transform after shifting the origin to a 4 -fold position are seen in table 1. A projection down a 4 -fold axis is centrosymmetric, and therefore all phases should be 0° or 180°. The phases have been listed in groups of the four symmetry-related reflections. The 4 -fold symmetry causes the two reflections (h, k) and $(-k, h)$ to have identical amplitudes and identical phases. The relation between a pair of reflections (h, k) and ($h,-k$) is not quite so straightforward. The mirror-symmetry of the electron diffraction pattern along the axes and diagonals can be caused by any of four different symmetry elements: a mirror plane, a glide plane, a 2 -fold rotation or a 21 screw axis. In projection it is not possible to distinguish between a mirror plane and a 2 -fold axis. Similarly a glide plane and a 2_{1} screw axis are indistinguishable in projection. However, if the phases are known, a mirror plane or 2 -fold axis can be distinguished from a glide plane or a 2_{1} screw. In all four possible cases the reflections (h, k) and $(h,-k)$ will have equal amplitudes. For mirror planes and 2 -fold axes the phases will be identical within such a pair of reflections, whereas for a glide plane or a 2_{1} screw axis the reflections for which $(h+k)$ is an odd number will differ in phase by 180°, and only reflections with $(h+k)$ even will have equal phases.

The electron diffraction pattern alone is not sufficient for making this space-group determination, unless clear systematic absences along the crystal axes can be seen. The electron diffraction pattern in this case is not conclusive. Even reflections are much stronger than the odd ones along the crystal axes, but there are some weak reflections with odd indices. If such reflections are found in X-ray diffraction it proves that there are
no systematic absences, but in electron diffraction space-group-forbidden reflections may well arise from dynamical scattering.

The space-group determination is preferentially done by comparing phases of symmetry-related reflections. For high-order reflections (h and/or k larger than 4), the phase relationships are hard to see (table 1), but for lower frequencies the phases are clearly distinguished as being close to either 0° or 180°. It is evident by looking at the two pairs $(2,1),(2,-1)$ and $(3,2),(3,-2)$ that the phases differ by 180° for $(h+k)$ odd, and there-
fore the symmetry musi be a glide plane or a 2_{1} screw along the axes. The nossible space groups are then P 4 bm and $\mathrm{P} 421_{1}$, these two space groups being indistinguishable in projection.

9. Phase determination

For the space groups P 4 bm and $\mathrm{P} 42_{1} 2$ every group of four symmetry-related reflections only has two possible combinations of phases. For reflections with ($h+k$) even, all four reflections

Fig. 4. Phase errors plotted as a function of position in reciprocal space, i.e. (h, k) index. The values are the differences between t corrected and the observed phases (after CTF correction). Systematically absent reflections ($(h, 0)$ with h odd and ($0, k$) with k od are marked by *. The phase errors are relatively small for low-order diffraction points (h and $k \leqslant 4$), and also for the diffractic points close to the direction [110], while for the diffraction points along [110] the phase errors increase dramatically with resolutio implying a beam tilt in this direction in the electron microscope.
must have a phase of 0° or they must all be 180°. For reflections with $(h+k)$ odd, either (h, k) and ($k,-h$) are 0° with ($h,-k$) and (k, h) being 180°, or vice versa. The four symmetry-related reflections have been extracted independently out of the Fourier transform so that we have four independent estimates of the phases for each quartet of reflections. If, for example, three reflection are reliably estimated, and one is deviating, it can be set to obey the others. Because the phase errors will only change slowly in reciprocal space, two reflections that are close in the diffraction pattern, for example $(7,4)$ and $(8,3)$, will be distorted in more or less the same way. The unpredictable noise is not expected to cause phase errors of more than 5° or 10°, which is not large enough to create any serious problems for assigning reflections a phase of either 0° or 180°.

The phases of all reflections for this $\mathrm{Cs}-\mathrm{Nb}-\mathrm{O}-\mathrm{F}$ compound were solved in the following way. First all reflections out to $(4,6)$ were given phases directly, since they are all very close to 0° or 180° and obey the phase relation rules for this symmetry. Tle reflection $(4,1)$ did not fit well to any of its two possible sets of phase values, so it could not be determined with certainty. The quartets $(4,2)$ and $(4,3)$ can easily be given values, as seen in tabie 1. With the phase combination suggested in table 1 for these two quartets the total phase errors are 140° and 123° respectively, but if the phase would have been reversed the phase errors would be $580^{\circ}\left(=4 \times 180^{\circ}-140^{\circ}\right)$ and 597°, respectively. Moreover, the phase errors for two reflections that are close in reciprocal space should be similar in sign and magnitude, and all reflections should therefore have their phase increased by between 16° and 74°.

With application of this procedure the phases are gradually solved one by one, always minimizing the difference in phase errors between adjacent reflections, until only a few reflections are left undetermined. These could be set to amplitude zero. Examples of such difficult reflections are the $(4,1)$ mentioned above and $(6,1)$ and $(6,3)$. These difficulties are due to the cross-over of the CTF at $2 \mathrm{~nm}^{-1}$. Near the cross-over the amplitudes of the reflections are much reduced, and the phases become more difficult to determine. Also if there is a
slight astigmatism two symmetry-related reflections may fall on either side of the cross-over, in which case the one outside has been reversed in phase relative to the one inside. Outside 0.38 nm^{-1}, the phases were hard to determine, and the data beyond this limit have not been included.

After the phases have been solved in this way. we have a list of finally-corrected phases, as shown in the middle columns of table 1 . The differences between these phases and the observed phases (but after CTF correction) were plotted as a function of indices (h, k) in reciprocal space (fig. 4). From this figure it was observed that the phases were clese to correct (within $\pm 30^{\circ}$) only in the low resolution area. In the direction ($h \sim k$), the phase errors increase dramatically with resolution This is a clear indication of electron beam tilt. The fact that the phase errors of high-order reflections

Fig. 5. Density map of the $\mathrm{Cs}_{x} \mathrm{Nb}_{54}(\mathrm{O}, \mathrm{F})_{146}$ compound aftt applying crystallographic image processing (CIP). The col rected phases and averaged amplitudes listed in table 1 wer used as input. The characteristic TTB block of NbX_{6} or tahedra can be seen around the 4 -fold axes. Over the upper-rigt unit ceil is overlaid the model of $\mathrm{TlNb}_{7} \mathrm{O}_{18}$ determined b X-ray diffraction (after reí. [10]). The thallium atoms are nc drawn in the X-ray model, but they are found inside the si) and seven-sided tunnels formed by NbX_{6} octahedra, wit higher density in the six-sided tunnels. The occupancy of 1 atoms in the X-ray investigation was found to be 0.64 for th six-sided and 0.46 for the seven-sided tunnels.
change sign relative to the low-order reflections, is also an intimation of beam tilt. The direction of beam tilt must be close to the diagonal $h=k$, where the phase errors are largest.

10. The structure map

The potential map of the structure is calculated as the Fourier transform of the corrected list of amplitudes and phases (table 1). Every general reflection occurs 8 times in reciprocal space as symmetry-related reflections. All symmetry-related reflections were given the same amplitudes, namely those of the average of those reflections. We tried to use both the amplitudes derived from the Fourier transform of the image and amplitudes obtained by measuring the intensities in the electron diffraction pattern. Although the latter do not suffer from the nonuniform attenuation caused by the CTF, it gave a poorer density map. The reason for this is that the ED comes from a large part of the crystal with variable thickness and orientation.

The calculated density map (fig. 5) shows peaks that could be attributed to niobium and cesium atoms. As initially suspected, the structure is isotypic with that of " $\mathrm{Rb}_{3} \mathrm{Nb}_{54} \mathrm{O}_{146}$ " [7] and ~ $\mathrm{TlNb}_{7} \mathrm{O}_{18}$ [10]. The structure is characterized by TTB (tetragonal tungsten bronze) units, where all five-sided tunnels are occupied by $-\mathrm{Nb}-\mathrm{X}-\mathrm{Nb}-$
X - strings ($X=O, F$) so that four pentagona: columns (PCs) [11] are formed. All PCs have ont NbX_{6} octahedron in common with the nex 1 neighbouring PC. The TTB units are mutually linked via additional NbX_{6} octahedra forming sixand seven-sided tunnels where the Cs atoms ars located. The stoichiometry of the structure mode is $\mathrm{Cs}_{x} \mathrm{Nb}_{54}(\mathrm{O}, \mathrm{F})_{146}, x \leqslant 8$. It should be em phasized that in the present case this metal aton arrangement was arrived at without using any prior knowledge of the chemistry or structure o the crystal. Only completely general crystallo graphic and electron optical techniques were ap plied to get the correct set of phases.

The structure of $\sim \mathrm{TlNb}_{7} \mathrm{O}_{18}$ which has bee solved by X-ray diffraction [10] has space groul $\mathrm{P} 4 / \mathrm{mbm}$ with $a=b=2.75 \mathrm{~nm}, c=0.394 \mathrm{~nm} . t$ projection along the short ($\sim 0.4 \mathrm{~nm}$) axis gives structure without metal atoms overlapping. Thu the main feature of the structure can be solved b this single projection. The atomic coordinates c the metal atoms reported from this phase (table : were compared to those of the present mode measured as the centers of the peaks in the calct lated potential map (fig. 5). The average differenc in atomic coordinates between these two strur tures was only 6 pm for the 8 niobium atoms. Th value is even better than the 10 pm reported f $\mathrm{K}_{7} \mathrm{Nb}_{15} \mathrm{~W}_{13} \mathrm{O}_{80}$ [3] and 13 pm found i $\mathrm{Na}_{3} \mathrm{Nb}_{12} \mathrm{O}_{31} \mathrm{~F}$ [12]. Both the thallium and tt

Table 2
Atomic coordinates for the heavy metal atoms in the $\mathrm{Cs}_{x} \mathrm{Nb}_{54}(\mathrm{O}, \mathrm{F})_{146}$ compound as determined by HREM and CIP, and - $\mathrm{TlNb}_{7} \mathrm{O}_{18}$ as determined by X-ray diffraction [10], $a=b=2.75 \mathrm{~nm}$; the thallium atoms were reported to be disordered inside t six- and seven-sided tunnels; thus no comparisons between Cs and Tl atom positions are given in the table

Atom	Fractional atomic coordinates				Difference EM/X-ray		Difference (A)
	Electron microscopy		X-ray diffraction		x / a	y / b	
	x / a	y / b	x / a	y / b			
Nb (1)	1/2	0	1/2	0	0	0	0
Nb (2)	0.199	0.699	0.1986	0.6986	0.0404	0.0004	0.0
Nb (3)	0.233	0.939	0.2328	0.9379	0.0002	0.0011	0.03
Nb (4)	0.366	11.968	0.3678	0.9642	0.0018	0.0038 0.0012	0.12 0.07
Nb (5)	0.064	0	0.0664	0.7212 0.8260	0.0024 0.0003	0.0012 0.0020	0.06
Nb (6)	0.158	$(1.828$	0.1583	0.8260	0.0003 0.0018	0.0030	0.10
Nb (7)	0.040	$\bigcirc .842$	0.0382	0.8390	0.0018 0.0014	0.0030 0.0026	0.08 0.08
Nb (8)	0.085	0.951	0.0864	0.9484	0.0014	0.026	0.08
Cs (1)	0.094	©.594	-	-			
Cs (2)	0.311	C. 311	-	-			

cesium atoms were found inside the six- and seven-sided rings of octahedra. However, in the $\sim \mathrm{TINb}_{7} \mathrm{O}_{18}$ study [10] the thallium atoms are reported to be disordered over several close positions, making a numerical comparison of the coordinates of Tl and Cs atoms impossible.

11. Image simulations

A number of theoretical image calculations were made with the aim of simulating the original image. This work started as soon as the first guess at the structure had been made and before CIP had been attempted. Although it was suspected that beam tilt had to be introduced in the calculations to account for the loss of 4 -fold symmetry in the
image, a reasonable agreement was not obtained, due to the number of free parameters involved. Not until the image processing described above had been performed and an indication of the beam tilt direction had been obtained was it possible to proceed. The coordinates of all atoms were taken from [10], except for the cesium positions. These latter were assumed to be located exactly in the centres of the tunnels, with full occupancies in the six-sided tunnels and occupancies varying from 0 to 1 in the seven-sided tunnels.

The relative importance of the distortions in phases and amplitudes was evaluated in the following way. A density map was calculated using the original image phases but the 4 -fold symme-try-averaged amplitudes. This map was very simi-

Fig. 6. Simuiated image of the $\mathrm{C}_{\mathrm{s}_{x}} \mathrm{Nb}_{54}(\mathrm{O}, \mathrm{F})_{146}$ compound inset into the origindi, only Fourier-filtered image. The occupancy of C in the center of the seven-sided tunnels is set to $3 / 4$. Defocus is -103 nm , and beam tilt is 5 mrad in the [110] direction, and with n astigmatism and crystal tilt. The other imaging parameters are: high voltage 200 kV , ,bjective aperture $4.1 \mathrm{~nm}^{-1}$, spheric: aberration 1.2 mm , beam divergence 5 mrad .
r to the original micrograph. However, a density lap calculated from the original amplitudes but ith phases corrected by CIP closely resembled te correct structure. Therefore the distortions in le image were mainly caused by phase errors. To first approximation crystal tilt affects only amlitudes and electron beam tilt only phases. The istortions in this image were caused by both rystal tilt and beam tilt, but beam tilt effects were ominating.
We compared the observed and calculated nages both in real and in reciprocal space. The itter was possible since the image analysis as resented in this paper provides amplitudes and hases, and these data can also be obtained from he multi-slice image simulations. In reciprocal pace we could obtain a very good agreement etween the amplitudes of the observed and imulated images, using the crystal tilt with the rimary beam going along the direction of $60,-15$).

In real space it was found that beam tilt magniudes larger than approximately 4.5 mrad were lecessary for the marked asymmetry in the black/ vhite dot pattern to be correctly reproduced, and nly tilt directions within $\pm 10^{\circ}$ from the $(1,1)$ liagonal and defocus values around -100 nm ;ave reasonable agreements. Fig. 6 shows the Fourier-filtered, but otherwise unprocessed, origisal image into which a patch of a calculated image las been inserted. This latter is based on a multiilice calculation for 1.5 nm thickness. It is seen hat, although the black/white hexagonal dot satches match reasonably well, the agreement at he seven-sided tunnels is not so good. This could se due to a wrong assumption concerning the zesium content of the tunnel sites. The image zontrast was, however, rather insensitive even to large variations in the occupancy of these sites. It is also possible that the cesium atoms are not located at the very centers of these tunnels.

12. Discussion

We have shown that it is possible by using CIP to interpret HREM images of thin crystals, even when taken under suboptimum ontical conditions, without using any chemical or structural knowl-
edge. CIP differs in this respect from the image simulation methods. If both the structure and the optical conditions are unknown, a trial-and-errortype procedure can be very tedious. By CIP it is possible to determine the correct phases of the structure factors (reflections) and improve the quality of the amplitudes. From this set of virtually distortion-free structure factors a single, correct density map can be calculated by inverse Fourier transformation. By careful analysis of the deviations from symmetry in the Fourier transform of a HREM image it is furthermore possible to objectively determine the optical parameters one by one.

In this study we have shown that a structure can be solved even from a single, distorted image, provided the resolution is high enough. Usually one has several images of the same structure, and this makes CIP even easier and safer. The ambiguity we had about the defocus value can be avoided by taking a through-focus series of micrographs. Phases that cannot be determined with certainty from one image may be evident in another one, taken at a different defocus. The deduced amplitudes and phases from several images may be compared and this will increase the certainty of the structure determination.

The high symmetry in this case was of course very helpful. It is, however, not absolutely necessary to take advantage of symmetry for solving a structure by CIP. In principle it should be possible to solve even a structure in the space group P1, by taking several pictures, with different optical parameters, especially a through-focus series. Every image will be the product of the structure plus a limited set of more or less unknown optical parameters. If the system is overdetermined, i.e. there are more reflections than unknown electron optical parameters for every picture, then the unknown parameters can in principle be determined and the crystal structure solved.

One very important factor in the solving of phases is the slow variation of phase errors in reciprocal space. This makes it possible to follow the errors as they propagate with increasing resolution. The larger the unit cell is, the closer together the lattice points will be in reciprocal space. and the easier it will be to follow the gradual
phase changes. A unit cell of dimensions above 2 nm like the present one is a great advantage in this procedure. Yet this is not absolutely necessary, but for considerably smaller unit cells a single picture will probably not suffice for doing this kind of analysis.

High valence metal oxides with open structures and one short axis are of course ideal objects for structure determination procedures by HREM, since the typica! distances between the heavy metal atoms are $0.3-0.4 \mathrm{~nm}$. Many niobium and tungsten oxides fulfill these requirements. In cases with shorter distances between metal atoms in projection, higher resolution is of course necessary. Similarly, in order to determine the positions of the lighter atoms, for example oxygen, higher resolution is needed. However, also in these cases CIP should be useful for correcting the electron optical distortions.

How useful can CIP be for investigations of non-periodic features, such as dislocations, faults or quasi-crystals? Clearly the method described here is not adequate for these cases. Yet after some modification CIP may well be very fruitful also in these cases, since the interpretations of non-periodic features are very dependent on good and, if possible, distortion-free images. In those cases where a non-periodic feature exists adjacent to a crystal on the same micrograph, the procedure can be applied to find the optical parameters, by analysing the crystalline area. The optical conditions are almost constant over the image so the optical parameters found for the crystalline region should be valid also in the other regions of the image. If the optical conditions are known the optical distortions can be corrected for, in reciprocal space, and not only at the lattice points, but continuously over the entire Fourier transform. The corrected Fourier transform can then be used to reconstruct the original scanned image, but now without the optical distortions. Such a picture would be very reliable in terms of contrast and relative positions of atoms.

13. Conclusions

By combining HREM and CIP the metal atom arrangement in thin metal oxides can be de-
termined with high accuracy, even from only a single heavily distorted image, and without using a priori any chemical or structural knowledge. Atomic positions of heavy metals are correct to within about 10 pm if the resolution of the image is 0.25 nm . The different distortions caused by optical and crystal misalignments can be found and corrected for, giving an almost distorticn-frea density map of the crystal structure. If CIP is applied to images of even higher resolution, it should become possible to determine positions of atoms closer together, such as in alloys. With the modifications proposed here image processing should help in interpreting also non-crystalline features, such as dislocations and quasi-crystals.

Acknowledgements

The authors wish to thank Professor Peder Kierkegaard for support, Mikael Hovmöller for writing a computer program for comparing phases in P4bm and The Swedish Science Research Council (NFR) for financial support. The authors also gratefully acknowledge comments made by referee R. Henderson on the first version of the manuscript.

References

[1] J.D. DeRosier and A. Klug, Nature 217 (1968) 130.
[2] L.A. Amos, R. Henderson and P.N.T. Unwin, Progr. Biophys. Mol. Biol. 39 (1982) 183.
[3] S. Hovmöller, A. Sjögren, G. Farrants, M. Sundberg and B-O. Marinder, Nature 311 (1984) 238.
[4] D.J. Smith, W.O. Saxton, M.A. O'Keefe, G.J. Wood and W.M. Stobbs, Ultramicroscopy 11 (1983) 263.
[5] W.O. Saxton and D.J. Smith, Ultramicroscopy 18 (1985), 39.
[6] R. Henderson, J.M. Baldwin, K.H. Downing, J. Lepaulı and F. Zemlin, Ulinamicroscopy 19 (1986) 147.
[7] B.M. Gatehouse, D.J. Lloyd and B.K. Miskin, Natl. Bur. Std. (US) Spec. Publ. 364 (1972) 15.
[8] M.A. O'Keefe, P.R. Buseck and S. Iijima, Nature 274 (1978) 322.
[9] J.M. Cowley and A.F. Moodie, Acta Cryst. 10 (1957) 609
[10] V. Bhide and M. Gasperin, Acta Cryst. B35 (1979) 1318.
[11] M. Lundberg, Chem. Commun. Univ. Stockholm No. 12 (1971).
[12] D. Li and S. Hovmöller, J. Solid State Chem. 73 (1988) 5.

